175/2025

Question Booklet	1
Alpha Code	

Question Booklet	
Serial Number	

Total No. of questions: 100 Time: 1 Hour 30 Minutes

Maximum: 100 Marks

INSTRUCTIONS TO CANDIDATES

- 1. The question paper will be given in the form of a Question Booklet. There will be four versions of question booklets with question booklet alpha code viz. A, B, C & D.
- 2. The Question Booklet Alpha Code will be printed on the top left margin of the facing sheet of the question booklet.
- 3. The Question Booklet Alpha Code allotted to you will be noted in your seating position in the Examination Hall.
- 4. If you get a question booklet where the alpha code does not match to the allotted alpha code in the seating position, please draw the attention of the Invigilator IMMEDIATELY.
- 5. The Question Booklet Serial Number is printed on the top right margin of the facing sheet. If your question booklet is un-numbered, please get it replaced by new question booklet with same alpha code.
- 6. The question booklet will be sealed at the middle of the right margin. Candidate should not open the question booklet, until the indication is given to start answering.
- 7. Immediately after the commencement of the examination, the candidate should check that the question booklet supplied to him contains all the 100 questions in serial order. The question booklet does not have unprinted or torn or missing pages and if so he/she should bring it to the notice of the Invigilator and get it replaced by a complete booklet with same alpha code. This is most important.
- 8. A blank sheet of paper is attached to the question booklet. This may be used for rough work.
- 9. Please read carefully all the instructions on the reverse of the Answer Sheet before marking your answers.
- 10. Each question is provided with four choices (A), (B), (C) and (D) having one correct answer. Choose the correct answer and darken the bubble corresponding to the question number using Blue or Black Ball-Point Pen in the OMR Answer Sheet.
- 11. Each correct answer carries 1 mark and for each wrong answer 1/3 mark will be deducted. No negative mark for unattended questions.
- 12. No candidate will be allowed to leave the examination hall till the end of the session and without handing over his/her Answer Sheet to the Invigilator. Candidates should ensure that the Invigilator has verified all the entries in the Register Number Coding Sheet and that the Invigilator has affixed his/her signature in the space provided.
- 13. Strict compliance of instructions is essential. Any malpractice or attempt to commit any kind of malpractice in the Examination will result in the disqualification of the candidate.

175/2025

Maximum: 100 marks

Time: 1 hour and 30 minutes

1.	Which	glycosidic	linkage i	is typical	of animal	glycogen?

(A) $\beta - 1.4$

(B) $\alpha - 1.4$ with $\alpha - 1.6$ branching

(C) $\alpha - 1.2$

(D) $\beta - 1.6$ branching

2. Which analytical technique is most commonly used to determine the secondary structure content of proteins?

(A) MALDI-TOF

(B) IR spectroscopy

(C) Circular Dichroism

(D) X-ray crystallography

3. The optical rotation of amino acids arises from :

(A) The α – carbon being chiral

(B) Peptide bond resonance

(C) Hydrogen bonding

(D) Side-chain polarity

4. In fluorescence microscopy, why does the light emitted by a fluorophore have a longer wavelength than the light used for excitation?

(A) Thermal expansion of fluorophore

(B) Stokes shift due to energy loss in the excited state

(C) Use of a dichroic mirror

(D) Photobleaching

5. In agarose gel electrophoresis, the migration distance of linear DNA fragments decreases as the fragment size increases. Since electrophoretic mobility is approximately inversely proportional to the logarithm of DNA fragment length (in kb), what happens to the mobility when the fragment size is doubled?

(A) Mobility is halved

(B) Mobility doubles

(C) No change in mobility

(D) Mobility decreases by approximately a constant factor (~log₂)

6.		reaction, you accidentally or youtcome?	nitted Mg ²⁺ fror	n the reaction buffer. What is the			
	(A)	The DNA polymerase will work normally.					
	(B)	The DNA polymerase will ha	ave reduced act	ivity or fail to extend.			
	(C)	The annealing temperature	will decrease.				
	(D)	The denaturation temperatu	are must be inci	reased.			
7.	Which of protein?	the following amino acids is m	nost likely to be	found in the interior of a globular			
	(A)	Glutamate	(B)	Arginine			
	(C)	Lysine	(D)	Leucine			
8.	-	with chronic liver disease sho This pattern is most character		ST, ALT, and GGT, with AST/ALT			
	(A)	Viral hepatitis					
	(B)	Alcoholic liver disease					
	(C)	Non-alcoholic fatty liver dise	ease (NAFLD)				
	(D)	Biliary obstruction					
9.	The biolog	gical value (BV) of dietary pro	tein depends pr	imarily on :			
	(A)	Total caloric content of the p	orotein source				
	(B)	Total nitrogen intake irrespe	ective of amino	acid pattern			
	(C)	Proportion of essential amin	o acids and the	ir utilization			
	(D)	Amount of saturated vs. uns	aturated fat pr	esent in the protein source			
10.	The predo	ominant metabolic adaptation	in marasmus is	S:			
	(A)	Increased insulin secretion v	with fat deposit	ion			
	(B)	Increased gluconeogenesis fr	rom muscle pro	teins alone			
	(C)	Enhanced lipolysis and ketone body production for energy					
	(D)	Reduced dependence on fat r	metabolism wit	h increased glucose oxidation			
11.	_	resents with chronic diarrhe in. Duodenal biopsy shows vil		, abdominal distension, and poor Thich condition is most likely?			
	(A)	Lactase deficiency	(B)	Cystic fibrosis			
	(C)	Celiac disease	(D)	Pancreatic cancer			
175	/2025		4	A			

- **12.** Rifampicin acts by:
 - (A) Inhibiting bacterial topoisomerase II
 - (B) Blocking bacterial RNA polymerase and inhibiting transcription
 - (C) Interfering with thymidylate synthase
 - (D) Inhibiting peptidoglycan precursor synthesis
- **13.** During severe hypoxia, which change in hemoglobin oxygen dissociation curve and metabolic parameter is MOST characteristic?
 - (A) Shift to the right with decreased 2,3-BPG (2,3-biphosphoglycerate)
 - (B) Shift to the left with increased pH
 - (C) Shift to the right with increased H⁺ and 2,3- BPG (2,3-biphosphoglycerate)
 - (D) Shift to the left with increased CO₂
- **14.** In nephrotic syndrome, which of the following plasma proteins shows the greatest proportional increase as a compensatory hepatic response?
 - (A) Albumin

(B) Transferrin

(C) α₂-macroglobulin

- (D) Immunoglobulin A
- **15.** Which of the following B vitamins is not correctly matched with its role in the citric acid cycle?
 - (A) Riboflavin (B2) as FAD, cofactor for succinate dehydrogenase.
 - (B) Niacin (B3) as NAD+, electron acceptor for isocitrate dehydrogenase.
 - (C) Thiamin (B1) as thiamin disphosphate, coenzyme for the decarboxylation step in α- ketoglutarate dehydrogenase.
 - (D) Pyridoxine (B6) as pyridoxal phosphate, essential for the formation of acetyl-CoA from pyruvate.
- **16.** Which of the following statements about the reciprocal regulation of glycogen synthase and glycogen phosphorylase is correct?
 - (A) cAMP-dependent protein kinase (PKA) activates glycogen synthase by phosphorylating it, converting glycogen synthase b→a.
 - (B) Protein phosphatase-1 (PP1) dephosphorylates glycogen synthase b, activating it, and this PP1 activity is enhanced by PKA via direct phosphorylation.
 - (C) One of the kinases that phosphorylates glycogen synthase is phosphorylase kinase, which is Ca²⁺/calmodulin-dependent, contributing to inactivation of synthesis when breakdown is promoted.
 - (D) Insulin promotes glycogenesis by activating cAMP-dependent protein kinase, which in turn dephosphorylates glycogen synthase b.

- 17. Which of the following metabolic disorders correctly matches the toxin or defect with its biochemical consequence?
 - (A) Jamaican vomiting sickness caused by hypoglycin, which activates medium and short-chain acyl-CoA dehydrogenase, leading to ketotic hypoglycemia.
 - (B) Dicarboxylic aciduria due to deficiency of long-chain acyl-CoA dehydrogenase, leading to urinary excretion of C6 C10 ω -dicarboxylic acids and ketotic hypoglycemia.
 - (C) Refsum disease accumulation of phytanic acid because of a defect in peroxisomal α -oxidation; leading to neuro symptoms like ataxia and retinitis pigmentosa.
 - (D) Zellweger syndrome caused by overactive β oxidation in peroxisomes, leading to depletion of very-long-chain fatty acids (C26 C38) in brain tissue.
- 18. Which of the following statements is correct regarding the cyclooxygenase (COX) pathway and prostaglandin synthesis?
 - (A) Cyclooxygenase (PGH synthase) converts arachidonate into PGH₂ using only its peroxidase activity.
 - (B) Cyclooxygenase is a suicide enzyme.
 - (C) 15-Hydroxyprostaglandin dehydrogenase stabilizes prostaglandins in tissue by reducing their rate of degradation.
 - (D) Thromboxane A₂ (TXA₂) and prostacyclin (PGI₂) are produced by the same cell type.
- 19. A patient presents with elevated plasma tyrosine, liver failure, and elevated succinylacetone on newborn screening. Which of the following enzyme defects is most likely responsible?
 - (A) Tyrosine aminotransferase
 - (B) 4-Hydroxyphenylpyruvate dioxygenase
 - (C) Fumary lacetoacetate hydrolase
 - (D) Homogentisate 1,2-dioxygenase
- **20.** In Lesch Nyhan syndrome, deficiency of hypoxanthine-guanine phosphoribosyltransferase (HGPRTase) leads to hyperuricemia. Which of the following best explains why PRPP level rise in this condition, contributing to purine overproduction?
 - (A) HGPRTase normally degrades PRPP directly, so its absence causes PRPP accumulation.
 - (B) Due to HGPRTase deficiency, feedback inhibition of PRPP amidotransferase by IMP and GMP decreases, increasing PRPP production.
 - (C) PRPP amidotransferase is inhibited in HGPRTase deficiency, so PRPP accumulates because it cannot enter de novo synthesis.
 - (D) Loss of HGPRTase causes hypoxanthine and guanine to accumulate, which allosterically activate PRPP synthesise to increase PRPP synthesis.

- **21.** In the mitochondrial electron transport chain, which of the following statements is correct?
 - (A) Electrons from succinate enter the respiratory chain at Complex I and are transferred via FMN to ubiquinone (Q).
 - (B) Complex II (succinate-Q reductase) pumps protons across the inner mitochondrial membrane, contributing to the proton gradient.
 - (C) Coenzyme Q (ubiquinone) is a mobile electron carrier that accepts electrons from both Complex I and Complex II.
 - (D) Cytochrome c is embedded in the inner mitochondrial membrane and transfers electrons directly to ubiquinone (Q).
- 22. Which of the following statements best describes allosteric regulation?
 - (A) Most allosteric effectors structurally resemble the enzyme's substrates or products, and thus bind to the active site.
 - (B) Allosteric effectors always raise the V_{max} of an enzyme by binding at the catalytic site.
 - (C) Allosteric effectors bind at a regulatory site distinct from the active site and can influence enzyme kinetics by changing either K_m, V_{max}, or both.
 - (D) Changes in enzyme levels via gene expression are a faster mechanism of regulation than allosteric control.
- 23. Which of the following statement is / are CORRECT about EPIGENETICS
 - (i) Currently, there are three major types of epigenetic modifications:
 - (1) DNA methylation,
 - (2) Histone modification and
 - (3) noncoding RNAs.
 - (ii) DNA methylation is as well-known epigenetic change. Methylation of Adenine occurs frequently; Cancer is the most common human disease associated with aberrant DNA modification.
 - (iii) Noncoding RNAs also function in the regulation of translation. In addition to noncoding ribosomal and tRNAs, there are many forms of noncoding RNA, including long (> 200 nucleotides) and short (20-200 nucleotides) noncoding RNAs
 - (A) only (i) and (ii)

(B) only (ii) and (iii)

(C) only (i) and (iii)

(D) All of the above (i), (ii) and (iii)

24.	Whi	ch of	the following statement is / are	CORRECT al	oout Flow cytometry?				
	(i)	This is the fluorescence technique used to identify and enumerate cells bearing a particular antigen(s) or the surface markers by suspending them in a stream of fluid and passing them through and electronic detection apparatus.							
	(ii)		It allows simultaneous multiparametric analysis of the physical and / or chemical characteristics of up to thousands of particles per second.						
	(iii)		erent populations of molecules or right-angle light scatter.	ean be differe	ntiated by charge using forward				
		(A)	only (i) and (ii)	(B)	only (ii) and (iii)				
		(C)	only (i) and (iii)	(D)	All of the above (i), (ii) and (iii)				
25.	Whi	ch of	the following statement is / are	CORRECT al	oout artificial active immunity?				
	(i)	Arti	ficial active immunity is the res	sistance induc	ed by vaccines.				
	(ii)		cines are preparations of live or mmunisation.	killed microo	rganisms or their products used				
	(iii)	imm	e vaccines initiate infections wit nunity caused by live vaccines la essary.	_	any injury or disease. The il years but booster doses may be				
		(A)	only (i) and (ii)	(B)	only (ii) and (iii)				
		(C)	only (i) and (iii)	(D)	All of the above (i), (ii) and (iii)				
26.		ch of Irome		are INCOR	RECT Primary immunodeficiency				
	(i)	defe			amoral immunodeficiency {B cell s} or combined immunodeficiency				
	(ii)	DiGeorge syndrome is an example of humoral immunodeficiency.							
	(iii)	Atax	Ataxia Telangiectasia an example of cellular immunodeficiency						
		(A)	only (i) and (ii)	(B)	only (ii) and (iii)				
		(C)	only (i) and (iii)	(D)	All of the above (i), (ii) and (iii)				
27.	Whi	ch of	the following statement is / are	CORRECT al	oout MICRO RNA?				
	(i)	The	number of bases in micro RNA	is $50 - 70$.					
	(ii)	The	y have RNA hairpin structure a	nd are called	short hairpin RNA.				
	(iii)		se are transported through nucl stands, one is broken by dicer n	_	o the cytoplasm, where out of the				
		(A)	only (i) and (ii)	(B)	only (ii) and (iii)				
		(C)	only (i) and (iii)	(D)	All of the above (i), (ii) and (iii)				
175	/2025			8	A				

28.	Which of the following statement is / are INCORRECT about inhibitors of translation in
	Bacteria?

- (i) Tetracycline inhibits the peptidyl transferase activity of bacterial ribosomes.
- (ii) Erythromycin bind to the 30S subunit of the bacterial ribosome and so inhibit attachment of amino acyl tRNA to the A site of ribosomes.
- (iii) Chloramphenicol prevents the translocation process.
 - (A) only (i) and (ii)

(B) only (ii) and (iii)

(C) only (i) and (iii)

(D) All of the above (i), (ii) and (iii)

29. Which of the following statement is / are CORRECT about Repair of DNA?

- (i) In Nucleotide excision-repair mechanism is used to replace regions of damaged between two GATC sequences.
- (ii) Faulty mismatch repair has been linked to hereditary non-polyposis colon cancer {HNPCC}
- (iii) In Base excision-repair, specific enzymes recognize a depurniated site and replace the appropriate purine directly, without interruption of the phospho-diester backbone
 - (A) only (i) and (ii)

(B) only (ii) and (iii)

(C) only (i) and (iii)

(D) All of the above (i), (ii) and (iii)

30. Which of the following statement is / are CORRECT hypersensitivity reactions?

- (i) In Type I hypersensitivity reactions, the antigen combines with the cell-fixed antibody, leading to release of pharmacologically active substances.
- (ii) In Type II hypersensitivity reaction, the damage is caused by antigen antibody complexes. These may precipitate in and around small blood vessels, causing damage to cells secondarily, or on membranes, interfering with their function.
- (iii) In Type IV hypersensitivity reaction, is a cell-mediated response. The antigen activates specifically sensitised CD4 and CD8 T cells, leading to the secretion of lymphokines and phagocyte accumulation.
 - (A) only (i) and (ii)
 - (B) only (ii) and (iii)
 - (C) only (i) and (iii)
 - (D) All of the above (i), (ii) and (iii)

31.	For a low spin-forbi		nplex, which electronic	c transition is Laporte-allowed but
	(A)	$^2T_{2g} ightarrow ^2E_g$	(B)	$^2T_{2g} ightarrow ^4T_{1g}$
	(C)	$^2T_{2g} ightarrow ^2A_{1g}$	(D)	$^2T_{2g} ightarrow ^4E_g$
32.	Which of	the following organome	etallic fragments is NO	T isolobal with methyl radical?
	(A)	$\mathrm{Fe(CO)}_{\!\scriptscriptstyle 4}$	(B)	$\mathrm{Co(CO)}_{\!3}$
	(C)	BH_3	(D)	$\mathrm{Mn(CO)}_{\!5}^{^+}$
33.	temperati	•	-	a Group-6 metal shows a from 10 signals to 2 signals at
	(A)	Berry pseudorotation	l	
	(B)	Ring-whizzing $(\eta^5 \leftrightarrow$	$\eta^1 \leftrightarrow \eta^3$ interchange)	
	(C)	Agostic hydrogen mig	gration	
	(D)	$ \eta^5 - Cp \leftrightarrow \eta^3 - Cp $ has	apticity shift	
34.	The most	stable sulphur-nitroge	n compound among the	e following is :
	(A)	$\mathrm{S_2N_2}$	(B)	$\mathrm{S_4N_4}$
	(C)	$\mathrm{S_3N_6}$	(D)	$\mathrm{S_8N_4}$
35.	A crystal Bravais la		ons only when h, k, l a	are either all even or all odd. The
	(A)	Simple cubic	(B)	Body-centered cubic
	(C)	Face-centered cubic	(D)	Hexagonal primitive
36.	Inverse sp	oinel Fe ₃ O ₄ has:		
	(A)	Fe ²⁺ in tetrahedral s	ites, Fe ³⁺ in octahedra	l
	(B)	Fe ³⁺ split between to	etrahedral and octahed	ral sites, Fe ²⁺ in tetrahedral

(C) $\mathrm{Fe^{3+}}$ in tetrahedral, $\mathrm{Fe^{2+}}$ and $\mathrm{Fe^{3+}}$ in octahedral

(D) Fe^{2+} split equally between tetrahedral and octahedral

37.	-	oconductivity of a solid inc ghtly above the band gap bec		when irradiated	with photons of
	(A)	Carrier concentration incre	ases exponentia	lly	
	(B)	Lattice vibrations decrease			
	(C)	Lattice vibrations increase			
	(D)	Fermi level shifts into cond	uction band		
38.	Atropison	nerism results from :			
	(A)	Rapid rotation			
	(B)	Planar chirality			
	(C)	Restricted rotation around	a single bond		
	(D)	Hyper conjugation			
39.	The two d	γ-hydrogen atoms in 3-chloro	butanoic acid ar	re:	
	(A)	homotopic	(B)	enantiotropic	
	(C)	diastereotopic	(D)	conformational	isomers
40.	Thermal e	electrocyclic ring closure of (2	EE, 4Z 6K)-octati	riene gives :	
	(A)	trans-5,6-dimethyl-1,3-cycle	ohexadiene		
	(B)	cis-5,6-dimethyl-1,3-cyclohe	exadiene		
	(C)	1,3-cyclooctadiene			
	(D)	1,3-cyclohexadiene			
41.	_	photo excited ketone is treats known as:	ted with an alk	ene an oxetane i	is produced. This
	(A)	Paterno-Buchi reaction	(B)	Norrish type I r	eaction
	(C)	Norrish type II reaction	(D)	Photo-Fries read	etion
42.	The C=O	stretching vibration for acety	rl chloride occurs	s approximately a	t:
	(A)	$1800~{\rm cm^{-1}}$	(B)	$1600\ cm^{-1}$	
	(C)	$1700~{ m cm}^{-1}$	(D)	$1750~{\rm cm}^{-1}$	
43.	_	ic compound shows a ¹³ C l l is most probably a/an :	NMR chemical	shift value abov	ve 200 ppm. The
	(A)	Carbonyl compound	(B)	Alkane	
	(C)	Alkene	(D)	Alcohol	

44.	Wha HBr'		ne product formed when erythro	o dl pair of	3-bromo-2-butanol is treated with
		(A)	dl pair of 2,3-dibromobutane		
		(B)	Meso-2,3-dibromobutane		
		(C)	2-bromobutane		
		(D)	2,3-dihydroxybutane		
45.	How	many	v radial and angular nodes are po	ossible for 4	d orbital?
		(A)	2 radial nodes and 1 angular no	ode	
		(B)	1 radial nodes and 2 angular no	odes	
		(C)	3 radial nodes and 2 angular no	odes	
		(D)	4 radial nodes and 2 angular no	odes	
46.	Whic	ch sta	tistics is commonly applied for d	ilute system	s?
		(A)	Maxwell-Boltzmann	(B)	Bose-Einstein
		(C)	Fermi-Dirac	(D)	All the above
47.	_	ch am $\delta \psi_f d ar i$		e correct reg	arding transition moment integral
	(i)	The	ground state ψ_i need not be tota	lly symmetr	ical.
	(ii)				or allowed transition must be non
	(iii)	For I	MW spectra, the transition mom	ent operator	is the dipole moment vector
	(iv)	If th	e direct product representation	of transitio	n moment integral is obtained as it is considered as an allowed
			sition.		
		(A)	(i), (iv)	(B)	(i), (iii)
		(C)	(ii), (iii)	(D)	(iii), (iv)
48.	How	many	ESR lines are possible for 1, 4-l	Benzosemiqu	uinone radical anion?
		(A)	3	(B)	5
		(C)	4	(D)	6
185	1000 =		16	•	A

	(i)	Isom	Isomer Shift depends on 5 electron density of the excited and ground state nuclei.				
	(ii)	Qua	drupole splitting does not occur for sym	metri	cal field gradient at the nucleus.		
	(iii)	Dopp	oler effect and recoil energy are not affe	ecting	Mossbauer spectra.		
	(iv)	The	he energy of the γ -ray must be ideally between $100-1000~{ m keV}$				
		(A)	(i), (iv)	(B)	(i), (iii)		
		(C)	(iii), (iv)	(D)	(i), (ii)		
50.	The	expre	ssion for mean free path of a molecule i	s:			
		(A)	$egin{aligned} rac{K_b T}{\sqrt{2}\pi\sigma^2 P} \ rac{P}{\sqrt{2}\pi\sigma^2 K_b T} \end{aligned}$	(B)	$egin{aligned} rac{K_b T}{\sqrt{2}\pi\sigma^P} \ rac{K_b P}{\sqrt{2}\pi\sigma^2 T} \end{aligned}$		
		(C)	$rac{P}{\sqrt{2}\pi\sigma^2 K_b T}$	(D)	$rac{K_b P}{\sqrt{2}\pi\sigma^2 T}$		
51.		_	e following methods, which one is su reactions in which wall effects interfer		e for studying the kinetics of gas		
		(A)	Flash photolysis	(B)	Shock tube method		
		(C)	Flow method	(D)	Pulse radiolysis		
52.	For t	the re	action between ${f S}_2{f O}_3^{2-}$ and ${f I}^-$ ion, whic	h stat	tements are correct?		
	(i)	Rate	constant increases with increases in ic	nic st	rength		
	(ii)	Rate	constant decreases with increases in i	onic s	trength		
	(iii)	Rate	constant is independent of ionic streng	gth			
	(iv)	Volu	me of activation for this reaction is neg	ative	(-ve)		
		(A)	(i), (ii)	(B)	(i), (iii)		
		(C)	(i), (iv)	(D)	(iii), (iv)		
53.	In ne	eutror	a activation analysis, the primary radia	tion d	letected is :		
		(A)	Alpha particles	(B)	Beta rays		
		(C)	Gamma rays	(D)	X-rays		
54.	The	functi	on of a supporting electrolyte in polaro	graph	y is to suppress:		
		(A)	Diffusion current	(B)	Migration current		
		(C)	Residual current	(D)	Convection current		

49. Which of the following statements are correct about Mossbauer spectra?

55.		nique in which the emission of photons he use of high energy plasma is :	from	analytes are brought to an excited
	(A)	ICP AES	(B)	AAS
	(C)	FES	(D)	SEM
56.	When the	number of theoretical plates is large, t	he col	lumn will be more?
	(A)	heavy	(B)	efficient
	(C)	costly	(D)	light
57 .		ermal method is used to study diffeneasured as a function of same applied		-
	(A)	TG	(B)	DSC
	(C)	DTA	(D)	TT
58.	In analyti	ical chemistry, a coulometer measures	the:	
	(A)	colour changes in a solution		
	(B)	volume of a solution		
	(C)	temperature of the solution		
	(D)	quantity of electricity required for a	chemi	cal change of the analyte
59.	A voltami potential	metric technique in which current is me	easur	ed as a function of time at constant
	(A)	Amperometry	(B)	Cyclic voltammetry
	(C)	Normal polarography	(D)	Square wave polarography
60.	The most	widely used signals in SEM are from :		
	(A)	Auger electrons	(B)	Characteristic X-rays
	(C)	Back scattered electrons	(D)	Secondary electrons
61.		sistorical development significantly tion in the early twentieth century?	impi	roved the accuracy of suspect
	(A)	Introduction of lie detectors		
	(B)	Digital microscopy		
	(C)	Discovery of fingerprint individuality		
	(D)	Development of chromatography		

62. courts function as Mahila courts. (A) Principal Sessions courts (B) Additional Sessions courts (C) District and Sessions courts Assistant Sessions courts (D) 63. In the context of Locard's principle of exchange, which of the following scenarios most accurately demonstrates a secondary transfer that can still be considered significant evidence during reconstruction of crime scene? (A) Fibres from a suspect's jacket found directly on the victim's torn clothing during physical contact Soil from the crime scene found embedded in the soles of the suspect's shoes (B) immediately after the crime (C) Glass shards from a broken window found on the suspect's gloves used during the burglary (D) A victim's hair found on the upholstery of a taxi that the suspect boarded after fleeing the crime scene 64. Which Forensic Laboratory in India is uniquely placed under the CBI instead of the ministry of Home Affairs? (A) CFSL Pune (B) CFSL Delhi (C) CFSL Kolkata (D) CFSL Guwahati 65. Which one of these is a search method particularly suited for complex crime scenes where fine trace evidence might be missed by visual inspection? (A) Wide angle photography (B) Sketching the scene by hand (C) Handful soil sampling (D) Alternate light source (ALS) examination During microscopic examination of a hair sample, a forensic scientist observes pigment granules that vary in shape, size and distribution along the shaft. Which structural layer is being analyzed and why is it critical for forensic comparison?

Medulla: because its index indicates hair growth phase

Cuticle: because its scale pattern determines species-specific origin

Cortex: because its pigment granules provide individualized color and pattern

Hair root: because it contains mitochondrial DNA suitable for identification

(A)

(D)

characteristics

- **67.** Which of the following statements about forensic soil evidence is false?
 - (A) All soils are chemically identical in a given region, so differentiation is impossible
 - (B) Soil can adhere to a suspect's clothing and shoes, linking them to a crime scene
 - (C) Soil analysis includes examination of mineral content, organic matter and trace particles
 - (D) Soil evidence is considered class evidence but can provide probative information
- **68.** Which instrumental technique is most definitive for identifying the chemical composition of individual layers in a multilayered paint sample?
 - (A) Micro Spectro Photometry (MSP)- for color comparison
 - (B) Fourier Transform Infrared Spectroscopy-(FTIR)-for molecular fingerprinting
 - (C) Polarising Light Microscopy (PLM)- for refractive index and layer thickness
 - (D) Scanning electron microscope with EDX (SEM-EDX)-for chemical composition
- **69.** Correct statement regarding lip prints according to Suzuki and Tsuchihashi classification:
 - (A) Type I lip prints are the most common pattern in the general population.
 - (B) Type II lip prints represents the branched grooves.
 - (C) Type III lip prints represents the reticular pattern.
 - (D) Type IV lip prints are commonly seen among children.
- **70.** All the following statement are correct regarding adolescent dental age estimation between 10 to 18 yrs.
 - (i) Demirjian method is based on eight developmental stages of calcification of seven left mandibular permanent teeth.
 - (ii) Cameriere's method is based on the relationship between age and the degree of open apices in tooth roots.
 - (iii) Olze method is based on visual radiographic comparison of tooth development and alveolar eruption on the right side of the jaw with standard figures
 - (A) Only (ii) and (iii)

(B) All of these (i), (ii) and (iii)

(C) Only (i) and (iii)

(D) Only (i) and (ii)

- 71. All are true regarding Bayard's spots except:
 - (A) It can be seen in electrocution and coronary thrombosis.
 - (B) It is most commonly seen anterior and basal portions of lungs in cases of hanging.
 - (C) It is pathognomonic of asphyxial death.
 - (D) Occur due to increased venous pressure in the thorax caused compressing of the neck.
- 72. Incorrect statement regarding new amendments of sexual offense law in the Bharatiya Nyaya Sanhita, 2023 (BNS):
 - (A) Section 79 of BNS criminalizes disclosure of identity of the victims of sexual offences.
 - (B) Section 77 of BNS criminalizes watching or capturing images/videos of a woman in private acts where she expects not to be seen.
 - (C) Section 75 of BNS defines sexual harassment is the unwelcome touching or other physical contact
 - (D) Section 74 of BNS criminalizes assault or use of criminal force to woman with intent to outrage her modesty.
- **73.** All are true regarding Paraquat poisoning except:
 - (A) Delayed respiratory failure is the classical cause of death.
 - (B) It produces reactive oxygen-free radicals causing pulmonary fibrosis.
 - (C) It is rapidly but incompletely absorbed and largely eliminated unchanged in urine.
 - (D) It is a bipyridinium herbicide which causes miosis and cholinergic crisis.
- 74. Which among the following statement is/are false with respect to aconite poison?
 - (i) Aconite species contain diterpene (C20) and norditerpene (C 19) alkaloids.
 - (ii) C 20 has high toxicity and esterified C 19 has low toxicity.
 - (A) None

(B) Only (i)

(C) Only (ii)

(D) Both (i) and (ii)

75.	True statement regarding cocaine metabolism:				
	(i)	Benzoylecgonine is a major metabolite produced by liver esterases and plasma			

(ii) Benzoylecgonine assays may be successful in urine up to 2 to 3 days due to the long elimination half-life.

(iii) Cocaine benzoylecgonine can be analysed in hair samples by GC-MS and RIA.

(A) All of these (i), (ii), (iii)

(B) Only (ii) and (iii)

(C) Only (i) and (ii)

(D) Only (ii)

76. Incorrect statement with respect to analytical methods used in toxicology:

- (A) Enzyme mediated immunoassay technique (EMIT) works on the principle that the amount of drug present is inversely proportional to the inhibition of an enzyme-substrate reaction.
- (B) High Performance Liquid Chromatography (HPLC) movement of the specimen through the columns packed with chromatographic adsorbent is facilitated by a high-pressure pump.
- (C) Neutron Activation Analysis (NAA) is a method based on the principle that many substances become radioactive when exposed to bombardment by neutrons.
- (D) Ultraviolet-Visible (UV-Vis) Spectrophotometry is based on the principle that many drugs when in solution will absorb UV radiation.
- 77. Which of the following statement is/are true with respect to classical signs of asphyxia?
 - (i) Tardieu spots are due to increased venous pressure in small venules and arterioles.
 - (ii) Engorgement of right side of heart is due to diminished suction power of left ventricle.
 - (iii) Increased fluidity of blood is due to fibrinolysis triggered by a surge of catecholamines during the agonal period.

(A) Only (ii) and (iii)

(B) Only (i) and (ii)

(C) Only (i) and (iii)

(D) All of these (i), (ii) and (iii)

78. Features of early post-mortem changes in the eye after death is/are:

- (i) Intraocular pressure becomes 10 mm Hg after 3 hours after clinical death.
- (ii) Outline of optic disk becomes blurred within 6 hours after clinical death.
- (iii) Tache noir formation within 30 minutes of death.

(A) All of these (i), (ii), (iii)

(B) Only (i) and (iii)

(C) Only (i) and (ii)

(D) Only (ii)

79. All are true regarding 'Harvard criteria 1969' to diagnose brain stem death, ex			ose brain stem death, except:					
	(A)	EEG is mandatory.						
	(B)	Duration of testing of respiration is 6 minutes.						
	(C)	Repetition of test after 24 hours.						
	(D)	Spinal reflexes are important.						
80.	Which bone has highest sex determination accuracy?							
	(A)	Clavicle	(B)	Femur				
	(C)	Mandible	(D)	Pelvis				
81.	Abrin, the	e toxin from Abrusprecatorius, ca	auses:					
	(A)	Gastrointestinal haemorrhage	and bowel of	edema				
	(B)	Loss of inhibition of Renshaw of	cells					
	(C)	Paralysis due to neuromuscular blockade						
	(D)	Severe central anticholinergic	syndrome					
82.	All are true regarding carbamates poisoning, except:							
	(A)	Carbamylate serine moiety of acetyl choline esterase						
	(B)	Irreversible binding to acetyl choline esterase						
	(C)	Miosis occurs late in severe poisoning						
	(D)	Shorter duration of action						
83.	Which sedative-hypnotic most commonly produces a bullous skin lesions?							
	(A)	Alprazolam	(B)	Phenobarbital				
	(C)	Lorazepam	(D)	Zolpidem				
84.	Choose th	e incorrect statement regarding	breath alcoh	ol estimation:				
	(A)	Acetone in diabetics may cause interference in infrared based breath analyzers.						
	(B)	Classical chemical breath test for alcohol is based on oxidation of ethanol by potassium dichromate.						
	(C)	Ratio of blood alcohol concentration to breath alcohol concentration used in breath analyzers is 2100:1.						
	(D)	Tidal air is the most accurate portion of expired air for breath alcohol estimation.						

85.		ure, a mobile device is kept in a —g, and network connectivity:	— to avoid remote wiping, data				
	(A)	Faraday bag	(B)	Gamma-ray bag			
	(C)	Electromagnetic bag	(D)	Radioactive bag			
86.	address as	Dynamic Host Configuration Protocol (DHCP) was developed to provide automated IP address assignments, reducing manual work for administrators. DHCP logs can show an investigator exactly which ———————————————————————————————————					
	(A)	conceptual network card	(B)	virtual network card			
	(C)	logical network card	(D)	physical network card			
87.	The Viola	-Jones algorithm is primarily used to	detect -	———— in biometrics.:			
	(A)	fingerprint	(B)	faces			
	(C)	gait	(D)	iris			
88. The presence of VMWare virtual machine artifacts on a hard disk im confirmed by identifying files such as the .vmdk (virtual hard drive for operation system) and the .vmem (backup of the virtual machine's pagin does .vmss file depicts:				(virtual hard drive for the guest			
	(A)	virtual machine snapshot file					
	(B)	B) virtual machine suspended state file					
	(C)	virtual machine snapshot metadata					
	(D)	virtual machine supplemental team	configu	uration file			
89.	Brain and	kidney have which LDH isoenzymes	?				
	(A)	LDH1	(B)	LDH3			
	(C)	LDH2	(D)	None of the above			
90.	Which is t	he most abundant and universally di	stribute	ed unusual base present in t-RNA?			
	(A)	Pseudouridine	(B)	Ribothymidine			
	(C)	Inosine	(D)	5-methylcytosine			

20

 \mathbf{A}

175/2025

91.	Pros	stagla	ndins are present in semen;	which is derived	from which fatty acids?		
		(A)	Arachidonic acid	(B)	Prostate		
		(C)	Butenoic Acids	(D)	Linoleic acids		
92.	Who stabilizes the helical structure of DNA and RNA, protecting genetic information and enabling proper function?						
		(A)	Nucleotides	(B)	Codon-anticodon interaction		
		(C)	Base stacking	(D)	None of the above		
93.	A corpse was found in an open field. The first wave of insects from <i>Calliphoridae</i> family were present and were actively ovipositing. These insects are most likely to be:						
		(A)	Silphid beetle	(B)	Rove beetles		
		(C)	Blow flies	(D)	Muscid flies		
94.	Which of the following statements are true regarding DNA barcoding of species?						
	(i)	DNA barcoding has been shown to be particularly effective in identifying a wide range of northern hemisphere bird species					
	(ii)	In DNA barcoding, cytochrome oxidase I (COI) gene works well for both plant and animal species.					
	(iii)	Scie	ntists identified combination	of matK and rb	cL genes as barcode for plants.		
		(A)	(i) and (ii)	(B)	(i) and (iii)		
		(C)	(ii) and (iii)	(D)	Only (i)		
95.	Of the methods used to remove numbers punched on metals, which of the following will permanently remove all recoverable traces of original number?						
		(A)	Filing and Drilling	(B)	Drilling and Peening		
		(C)	Peening and Welding	(D)	Welding and Drilling		
96.	Which of the following are the essential components of Mac Naughten's Standard?						
	(i)	The presence of psychopathology: disease of the mind, resulting in					
	(ii)	A defect of reason, such that the person					
	(iii)	Lacks knowledge concerning the nature, quality and/or wrongfulness of the act					
	(iv)	There must be no evidence of planning or premeditation by the defendant before the criminal act was committed.					
		(A)	(i), (ii) and (iii)	(B)	(i) and (iv)		
		(C)	(ii), (iii) and (iv)	(D)	(i), (ii) and (iv)		

97.	Which of the following strategies are found to be common for disguised handwriting but not for disguised signatures?							
	(i)	Greater pen stops and pen lifts						
	(ii)	Unu	sual letter form					
	(iii)	(iii) Change of slope						
		(A)	(i), (ii) and (iii)	(B))	(i) and (ii)		
		(C)	(ii) and (iii)	(D))	Only (i)		
98.	The formation of halo of ink around the character (called ink squash) is a characteristic property of :							
	(i)	Lett	erpress printing					
	(ii)	Flexography						
	(iii)	Stan	np impression					
	(iv)	Plan	ographic printing					
		(A)	(i), (ii) and (iii)	(B))	(i), (iii) and (iv)		
		(C)	(ii), (iii) and (iv)	(D))	(i), (ii) and (iv)		
99.	Which of the following problem generally arises while analyzing ink sample by Raman spectrophotometer?							
		(A)	Two different samples	showing similar pa	tt	erns		
		(B) The quantity of detected compound cannot be determined						
		(C) Some chemicals do not readily form gases						
		(D) Occurrence of fluorescence signal						
100.	Which of the following water marking techniques gives a sharp edge definition?							
	(i)	Wire mark.						
	(ii)	Shaded mark						
	(iii)	Mollete process						
(iv) Embossed watermark								
		(A)	(i), (ii) and (iii)	(B))	(i), (iii) and (iv)		
		(C)	(ii), (iii) and (iv)	(D))	(i), (ii) and (iv)		
			-					

SPACE FOR ROUGH WORK

SPACE FOR ROUGH WORK