171/2025

Question Booklet Alpha Code

Δ	
$\boldsymbol{\Box}$	

Question Booklet Serial Number

Total No. of questions: 100 Time: 1 Hour 30 Minutes

Maximum: 100 Marks

INSTRUCTIONS TO CANDIDATES

- 1. The question paper will be given in the form of a Question Booklet. There will be four versions of question booklets with question booklet alpha code viz. A, B, C & D.
- 2. The Question Booklet Alpha Code will be printed on the top left margin of the facing sheet of the question booklet.
- 3. The Question Booklet Alpha Code allotted to you will be noted in your seating position in the Examination Hall.
- 4. If you get a question booklet where the alpha code does not match to the allotted alpha code in the seating position, please draw the attention of the Invigilator IMMEDIATELY.
- 5. The Question Booklet Serial Number is printed on the top right margin of the facing sheet. If your question booklet is un-numbered, please get it replaced by new question booklet with same alpha code.
- 6. The question booklet will be sealed at the middle of the right margin. Candidate should not open the question booklet, until the indication is given to start answering.
- 7. Immediately after the commencement of the examination, the candidate should check that the question booklet supplied to him contains all the 100 questions in serial order. The question booklet does not have unprinted or torn or missing pages and if so he/she should bring it to the notice of the Invigilator and get it replaced by a complete booklet with same alpha code. This is most important.
- 8. A blank sheet of paper is attached to the question booklet. This may be used for rough work.
- 9. Please read carefully all the instructions on the reverse of the Answer Sheet before marking your answers.
- 10. Each question is provided with four choices (A), (B), (C) and (D) having one correct answer. Choose the correct answer and darken the bubble corresponding to the question number using Blue or Black Ball-Point Pen in the OMR Answer Sheet.
- 11. Each correct answer carries 1 mark and for each wrong answer 1/3 mark will be deducted. No negative mark for unattended questions.
- 12. No candidate will be allowed to leave the examination hall till the end of the session and without handing over his/her Answer Sheet to the Invigilator. Candidates should ensure that the Invigilator has verified all the entries in the Register Number Coding Sheet and that the Invigilator has affixed his/her signature in the space provided.
- 13. Strict compliance of instructions is essential. Any malpractice or attempt to commit any kind of malpractice in the Examination will result in the disqualification of the candidate.

171/2025

approximately: (A)

(C)

 $550~\mathrm{Hz}$

 $470~\mathrm{Hz}$

Maximum: 100 marks Time: 1 hour and 30 minutes A body of mass 5 kg is acted upon by two perpendicular forces of 6 N and 8 N. The 1. acceleration of the body is: 1 m/s^2 (A) (B) 2 m/s^2 $\sqrt{2}$ m/s² (C) (D) 10 m/s^2 2. A constant force of 20 N acts on a body of mass 4 kg moving in a straight line. The body moves 5 m. The work done by the force is: (A) 4 J 25 J(B) (C) 50 J 100 J(D) 3. A bullet of mass 0.01 kg is fired into a block of 2 kg resting on a smooth surface. If the bullet embeds in the block and the velocity of the bullet before impact is 300 m/s, find their common velocity: (A) 1.5 m/s2.5 m/s(B) (C) 5 m/s(D) 1 m/s A solid sphere and a solid cylinder, each of same mass and radius, roll down an incline. 4. Which one reaches the bottom first? (A) Sphere (B) Cylinder (C) Both together (D) Depends on inclination **5.** The amplitude of a damped oscillator decreases to half its initial value in 10 s. The logarithmic decrement is: (A) 0.069 (B) 0.035 (C) 0.693(D) 1 6. Two waves $y_1 = 0.02\sin(100\pi t)$ and $y_2 = 0.02\sin(100\pi t + \pi/2)$ are superimposed. The resultant amplitude is: (A) 0.02 m(B) 0.028 m (C) 0.04 m $(D) \quad 0$ A car horn emits sound of frequency 500 Hz. If the car moves towards a stationary 7. observer with a speed of 30 m/s (speed of sound = 330 m/s), observed frequency is

 $630~\mathrm{Hz}$

 $450~\mathrm{Hz}$

(B)

(D)

8.	According to Einstein's postulates, the speed of light in vacuum:				
	(A)	Depends on observer	(B)	Depends on motion of source	
	(C)	Is constant in all inertial frames	(D)	None of these	
9.		clock appears to tick once every 2.		stationary observer. If the clock's	
	(A)	0.2 c	(B)	0.4 c	
	(C)	0.6 с	(D)	0.8 c	
10.	A soap bu	ubble of radius 2 cm has surface ter e is :	sion 0.0	3 N/m. The excess pressure inside	
	(A)	1.5 N/m^2	(B)	3 N/m^2	
	(C)	12 N/m ²	(D)	6 N/m ²	
11.	A copper of 1 kg:	wire of length 2 m and radius 1 mm	is hung	vertically and loaded with a weight	
	If the Young's modulus of copper is 2×10^{10} N/m ² , then the elongation produced in the wire is approximately:				
	(Take $g =$	10 m/s ² and $\pi = 3$)			
	(A)	$3 \times 10^{-5} \mathrm{m}$	(B)	$6 \times 10^{-5} \mathrm{m}$	
	(C)	$3 \times 10^{-4} \mathrm{m}$	(D)	$6 \times 10^{-4} \mathrm{m}$	
12. A body undergoes forced oscillations. The amplitude of oscillation we the driving frequency equals:			f oscillation will be maximum when		
	(A)	Zero	(B)	Natural frequency	
	(C)	Damping constant	(D)	Twice the natural frequency	
13.		the following Boolean expressions neration for two inputs A and B :	ot correc	ctly represents the Exclusive-OR	
	(A)	$A \oplus B$	(B)	$\overline{A}B + A\overline{B}$	
	(C)	$(A+B)(\overline{A}+\overline{B})$	(D)	$\overline{A} + \overline{B}$	
14.	A capacito	or is often referred to as a blocking ca	apacitor	because it:	
	(A)	allows AC current to pass	(B)	blocks DC current	
	(C)	blocks both AC and DC current	(D)	blocks AC current	
171	/2025	4		\mathbf{A}	

15.	The prima	ary characteristics of the common collector configuration of transistor is:			
	(A)	current gain is nearly unity			
	(B)	low input impedance and medium o	utput in	npedance	
	(C)	voltage gain nearly unity			
	(D)	high bandwidth			
16.	• Which of the following is an advantage of a bridge rectifier compared to a center-tagrectifier?				
	(A)	Requires fewer diodes			
	(B)	Lower transformer utilization factor	r (TUF)		
	(C)	Lower PIV requirement for diodes			
	(D)	Both (B) and (C)			
17.	7. Which specific, new physical phenomenon was uniquely predicted as a consequence Maxwell's addition of the displacement current term to Ampere's Circuital Law?			* -	
	(A)	Propagation of self-sustaining electrons	romagne	etic waves in vaccum	
	(B)	The existence of magnetic monopole	es		
	(C)	Changing magnetic fields produce e	lectric f	ields	
	(D)	Light is a form of transverse wave			
18.		tement accurately describes the key LC or RC oscillators?	advanta	age of a piezoelectric oscillator over	
	(A)	They provide exceptionally high factor	requency	y stability and a superior quality	
	(B)	They offer a highly adjustable frevoltage	equency	range, easily tuned by external	
	(C)	They consume significantly less pov	ver		
	(D)	They require no external amplificat	ion circu	uits	
19.		material with a very narrow hyst applications?	eresis lo	oop is desirable for which of the	
	(A)	Permanent bar magnets	(B)	Magnetic data storage devices	
	(C)	Electromagnets and transformers	(D)	Magnetic refrigerator seals	
20.	For an RC	differentiator circuit, the correct cor	ndition f	or proper differentiation is:	
	(A)	RC >> T	(B)	$RC \approx T/2$	
	(C)	RC = T	(D)	RC << T	
171/	2025	5		A	

21.	1. The energy stored in an inductor of 2 H carrying 1 A current is:			
	(A)	1 J	(B)	2 J
	(C)	$0.5\mathrm{J}$	(D)	4 J
22.		source of 0.1 A has a paralle. Find the current through the		stance of 10 Ω . It is connected to a
	(A)	0.02 A	(B)	0.05 A
	(C)	0.01 A	(D)	$0.005 \mathrm{A}$
23.	_	citor in an RC discharging cond time in terms of RC:	ircuit loses 80%	6 of its initial charge in a certain
	(A)	1.609 RC	(B)	0.693 RC
	(C)	1.386 RC	(D)	5 RC
24.	The simpl	lifted form of $AB + A'C + BC$	is:	
	(A)	AB + A'C	(B)	AC + B
	(C)	A'C + AB	(D)	AC + BC
25.	In the con	text of polarization by reflect	ion, what define	ed the Brewster angle?
	(A)	The angle of incidence perpendicular to each other	where the re	flected and refracted rays are
	(B)	The angle where total intern	nal reflection fir	st occurs
	(C)	The angle at which no light	is reflected from	n the interface
	(D)	The angle of incidence when	e the reflected l	ight is completely unpolarized
26.	Which of grating?	the following factors primari	ly determines t	he resolving power of a diffraction
	(A)	The distance between the gr	rating and the s	creen
	(B)	The intensity of the inciden	t light	
	(C)	The refractive index of the g	grating material	
	(D)	The total number of ruled li	nes on the grati	ng
27.	Why is a r	metastable state essential for	laser action?	
	(A)	It enables the achievement	of population in	version
	(B)	It ensures that only spontar	neous emission o	occurs
	(C)	It allows for rapid decay to	the ground state	
	(D)	It increased the energy of the	ne emitted photo	ons

28.		splacement law states that the wavelength corresponding to maximum spectral (λ_{max}) from the black body is :					
	(A) Directly proportional to its absolute temperature (T)						
	(B)	Directly proportional to T^4					
	(C)	Inversely proportional to its abs	solute tempe	erature (T)			
	(D)	Inversely proportional to T^4					
29.	The Claus	ne Clausius statement of the Second Law of Thermodynamics essentially asserts that :					
	(A) You cannot build an engine that is 100% efficient						
	(B)	Heat cannot spontaneously flor external work	w from a co	old body to a hot body without an			
	(C)	Absolute zero cannot be reached	d in a finite	number of steps			
	(D)	Energy flow from hot body to co	ld body				
30.		ical mechanics, what is the d g N independent particles (with n		f the phase space for a system tructure)?			
	(A)	N	(B)	2 N			
	(C)	6 N	(D)	3 N			
31.		axwell-Boltzmann distribution, have near the peak of the curve		cal quantity is most likely for a			
	(A)	The average speed	(B)	The root mean square speed			
	(C)	The maximum speed	(D)	The most probable speed			
32.		engine operates between two re te maximum possible efficiency of		temperature of 500 K and 300 K.			
	(A)	20%	(B)	60%			
	(C)	40%	(D)	80%			
33.	A canonical share t		inics is defir	ned as a collection of systems that			
	(A)	Temperature (T), Volume (V) ar	nd Chemical	Potential (μ)			
	(B)	Temperature (T), Volume (V) ar	nd Number o	of Particles (N)			
	(C)	Energy (E), Constant Pressure	(P) and Tem	perature (T)			
	(D)	Energy (E), Volume (V) and Nu	mber of Part	ticles (N)			

171/	2025		8		Α		
		(C)	Controlled release of fission energy	(D)	Nuclear Fusion		
		(A)	Uncontrolled release of fission energy	(B)	Threshold energy		
39.	Whic	ch pro	cesses is responsible for the production	of hy	drogen bomb?		
		(C)	Only (iii)	(D)	None of the above		
		(A)	All the above (i), (ii) and (iii)	(B)	Only (ii)		
	(iii)	Pfun	nd				
	(ii)	Pasc					
	(i)	Lym	an				
38.	Whic	ch ser	ies of lines in the hydrogen spectrum ap	pears	s in the visible region?		
		(C)	Only (ii) and (iii)	(D)	None of the above		
		(A)	All the above (i), (ii) and (iii)	(B)	Only (i) and (ii)		
	(iii)		r's theory provided explanation about th		_		
	(ii)	Bohr atomic model couldn't explain the stability of an atom.					
	(-)		drogen atom.	-87			
o 1 .	(i)		e's theory helped in calculating the ene	rgv o	f the electron in a particular orbit		
37.	Whi	ah of t	the following is not true?				
		(C)	45°	(D)	60°		
	0	(A)	30°	(B)	15°		
36.	patte	ern of	angular width of the central bright magnetic as a slit of width 12×10^{-5} cm, when the evelength 600 nm is:				
0.0	/DI ₂₋₂	, ,		. ,			
		(C)	60 cm	(D)	40 cm		
	Curv	(A)	50 cm	(B)	80 cm		
35.	_		onvex lens is made up of a glass of ref rface is 40 cm, the focal length of the len				
		(C)	kT	(D)	$\frac{5}{2} \text{ kT}$		
		(A)	$\frac{1}{2}$ kT		$\frac{3}{2}$ kT		
34.	According to the equipartition theorem, what is the average energy per translational degree of freedom for a molecule at temperature T?						

34.

40.	Calc	ulate	the number of atoms contained within	a face	e-cantered cubic unit cell :
		(A)	3	(B)	4
		(C)	1	(D)	8
41.			e defect in crystals which is caused by an interstitial position:	the the	shifting of an ion from its normal
	(i)	Met	al excess defect		
	(ii)	Scho	ottky defect		
	(iii)	Frer	akel defect		
		(A)	All the above (i), (ii) and (iii)	(B)	None of the above
		(C)	Only (iii)	(D)	Only (ii)
42.	Elen	nenta	ry particles of non-integral spin are cal	led :	
		(A)	Fermions	(B)	Photon
		(C)	K-meson	(D)	Neutrino
43.	Whi	ch of t	the following is not true?		
	(i) Superconductivity is the property of certain materials to conduct direct conficient without energy loss when they are cooled above a critical temperate				
	(ii)		main advantage of the supercontromagnet, is that it does not dissipate		
	(iii)	_	erconductors prevent external magnet superconductor.	ic fiel	ld from penetrating the interior of
		(A)	All the above (i), (ii) and (iii)	(B)	Only (i)
		(C)	None of the above	(D)	Only (iii)
44.	The	bomb	ardment of boron with alpha particles	yields	a radioactive isotope of :
		(A)	$_{7}N^{13} +_{0} n^{1}$	(B)	$_{6}C^{13} +_{0} n^{1}$
		(C)	$_{7}N^{14} +_{0} n^{1}$	(D)	$_{12}C^{12} +_0 n^1$
45.	Calc	ulate	the Miller indices of the crystal plane	whose	e intercepts are $3a, 6b$ and $3c$:
		(A)	(2 2 1)	(B)	(1 3 1)
		(C)	(2 1 2)	(D)	(3 1 3)

46.	The	wave function ψ^2 in Schrodinger wave equation represents :						
	(i)	Amp	Amplitude of the wave function.					
	(ii)	Eige	n functions and eigen values.					
	(iii)	The	probability of finding an electron of a g	iven e	energy.			
		(A)	Only (iii)	(B)	Only (i) and (iii)			
		(C)	All the above (i), (ii) and (iii)	(D)	Only (i)			
47.	Whic	eh of t	he following statement is true?					
	(i)	Pack	ing fraction can have only positive valu	ıe				
	(ii)	A po	sitive value of packing fraction implies	the in	nstability of nuclei.			
	(iii)	A po	sitive value of packing fraction implies	the st	tability of nuclei.			
		(A)	Only (iii)	(B)	Only (ii)			
		(C)	Only (i) and (iii)	(D)	None of the above (i), (ii) and (iii)			
48.	An e	xamp	le of Orthorhombic crystal system :					
		(A)	$\mathrm{Na_{2}SO_{4}}$	(B)	KCl			
		(C)	$\mathrm{K_{2}SO_{4}}$	(D)	CuSO_4			
49.	Whic	ch of t	he following statements are true consid	lering	Uncertainty principle?			
	(i)		e object is microscopic its position or act of light photons.	veloci	ty will not be altered with by the			
	(ii)		e object is extremely minute it will suff mpact of light photons.	er a c	change in its position or velocity by			
	(iii)		e object is of reasonable size, its position mpact of light photons.	n or	velocity will not be altered with by			
		(A)	Only (ii) and (iii)					
		(B)	Only (i)					
		(C)	Only (ii)					
		(D)	Only (i) and (iii)					

	(i)		For a system moving in one dimension, i.e. x-coordinate, the physical state of a system at time t is described by the wave function $\psi(x,t)$.						
(ii) The wave function $\psi(x, t)$ and its first and second derivatives are and single valued for all values of x .					d derivatives are continuous, finite				
	(iii)	A pl	hysical observable quantity can be	represente	ed by a Hermitian operator.				
		(A)	Only (ii) and (iii)	(B)	Only (i)				
		(C)	Only (ii)	(D)	All the above				
51.	The	The oxidizer commonly used in solid rocket propellants is:							
		(A)	Liquid hydrogen	(B)	Helium				
		(C)	Carbon	(D)	Potassium nitrate				
52.	In a	1D p	article in a box, boundary condition	ns require	the wave function to be :				
		(A)	Infinite	(B)	Zero at the walls				
		(C)	Maximum at the walls	(D)	Constant				
53.	A 2p	orbi	tal corresponds to :						
		(A)	n = 1, 1 = 0	(B)	n = 2, 1 = 0				
		(C)	n = 2, l = 1	(D)	n = 1, 1 = 1				
54.	The	Born	-Oppenheimer approximation allo	ws separat	ion of :				
		(A)	Spin and nuclear motions						
		(B)	Rotational and electronic motions	\mathbf{s}					
		(C)	Electronic and nuclear motions						
		(D)	Vibrational and rotational motion	ns					
55.	The	rotat	ional constant B is proportional to	:					
		(A)	Moment of inertia	(B)	Nuclear spin				
		(C)	Square of radius	(D)	1/(moment of inertia)				
56.	A mo	olecu	le is centrosymmetric if it has:						
		(A)	center of symmetry	(B)	plane of symmetry				
		(C)	axis of symmetry	(D)	rotation reflection axis				
57.	Scho	ttky	defect involves :						
		(A)	Only cation vacancy						
		(B)	Only anion vacancy						
		(C)	•						
		(D)	Interstitial defects						
171	/2025		11		A				

[P.T.O.]

50. Which one is a postulate of wave mechanics?

171	/2025	12		${f A}$
	(C)	sp	(D)	$\mathrm{sp^3d}$
	(A)	${f sp^3}$	(B)	sp^2
65.	The hybri	dization of Nickel in $[Ni(CO)_4]$ is:		
	(C)	$n = 4, l = 1, m = -1, s = +\frac{1}{2}$	(D)	$n = 3, l = 1, m = 1, s = +\frac{1}{2}$
		$n = 3, 1 = 0, m = 0, s = +\frac{1}{2}$		$n = 4, l = 0, m = 1, s = +\frac{1}{2}$
64.	(atomic n	ct set of four quantum numbers (n, l, umber 31) are :		
	, ,			
	(D)	The concept unites the wave and par		
	(C)	The De Broglie wavelength decreases		-
	(A) (B)	All moving particles have a waveleng The De Broglie wavelength increases		
63.		the following statements about De Bro		
	(C)	Burning again at high temperature	(D)	Adding more water vapor
	(A)	Electrostatic precipitator	(B)	Filtration through cloth
62.	The most	effective method for removing particul	ate ma	atter from industrial emissions is:
	(C)	Carbonates of alkali metals	(D)	Sulfides of transition metals
	(A)	Hydrated aluminosilicates	(B)	Metallic oxides
61.		re chemically:	(D)	3.5 (1): ()
	, ,		(D)	Sinca gei
	(A) (C)	Organic solvent Paper fibers only	(B) (D)	Water absorbed on paper Silica gel
60.		chromatography, the stationary phase		Water should an name
			, ,	
	(A) (C)	NaNO ₃ AgNO ₃	(B) (D)	NaCl Both (B) and (C)
59 .		of AgCl decreases in :	(D)	N. Cl
	, ,		(D)	
	(C)			Colour
	(A)	Refractive index	(B)	Osmotic pressure

58. Which one of the following is a colligative property?

66.	Identify the incorrect statement regarding Hund's Rule of Maximum Multiplicity:				e of Maximum Multiplicity :				
		(A)	Electrons occupy degenerate orbitals s			singly	singly before pairing		
		(B)	All unpaired electrons in degenerate orbitals have parallel spins						
		(C)	Pairing st	arts o	nly after all degenerat	e orbi	tals are half-filled		
		(D)	Electrons	in de	generate orbitals may	have o	opposite spins before half-filling		
67.	Amo	ong the	e following	comp	ounds, intramolecular	hydro	ogen bonding is observed in:		
	(i)	Wate	er						
	(ii)	Etha	nol						
	(iii)	o-Ni	trophenol						
	(iv)	Salio	ylaldehyde)					
		(A)	(i) and (ii)	only		(B)	(iii) and (iv) only		
		(C)	(ii) and (ii	i) only	7	(D)	(i), (ii) and (iv) only		
68. The bond order of the O_2 , N_2 and F_2 molecules according to Molecular Ork (MOT) are respectively:				rding to Molecular Orbital Theory					
		(A)	2, 3, 1			(B)	1, 2, 3		
		(C)	3, 2, 1			(D)	2, 1, 3		
69.	Usin	Using the Lande's equation, the magnetic moment (µ) of Fe ²⁺ (3d ⁶) in Bohr magnetons							
	(B.N	I .) is a	pproximate	ely:					
		(A)	2.83			(B)	4.90		
		(C)	6.70			(D)	5.92		
70.	According to VSEPR theory, the shape and hybridization of the central sulphur atom in SF_4 molecule are :								
		(A)	Tetrahedral and ${ m sp^3}$		$\mathrm{d}\;\mathrm{sp}^3$	(B)	Trigonal bipyramidal and sp^3d^2		
		(C)	See-saw a	nd sp	3 d	(D)	Square planar and dsp ²		
71.	Mat	ch the	following	ores w	rith the metals obtaine	d fron	n them:		
			nn I (Ore)		Column II (Metal)				
	(a)	Cinna		(i)	Lead				
	(b)	Galer		(ii)	Mercury				
	(c) (d)	Baux	ite blende	(iii)	Uranium Aluminium				
	(u)			(iv)		(D)			
		(A)			(c)–(iv), (d)–(iii)	(B)	(a)–(iv), (b)–(ii), (c)–(iii), (d)–(i)		
		(C)	(a)–(1), (b)	—(11), ((c)–(iv), (d)–(iii)	(D)	(a)–(iii), (b)–(iv), (c)–(ii), (d)–(i)		

72.	The half-life of a radioactive isotope is 10 days. The fraction of the isotope remainin after 50 days will be :								
		(A)	1/4			(B)	1/8		
		(C)	1/16			(D)	1/32		
73.	In t	he ura	anium radioactive disintegration series, t			the st	the stable end product formed is:		
		(A)	Lead-206			(B)	Lead-207		
		(C)	Lead-208			(D)	Bismuth-209		
74.	The nuclear reaction :								
	${}^{14}_{7}N + {}^{4}_{2}\text{He} \rightarrow {}^{17}_{8}O + {}^{1}_{1}H$ is an example of :								
		(A)	Natural radioactivity			(B)	Artificial transmutation		
		(C)	Nuclear fission			(D)	Nuclear fusion		
75.	Mat	ch the	following refining meth	ods w	ith the m	etals	purified by them :		
		Colur	nn I (Refining Process)		Column	II (Me	etal Refined)		
	(a) Mond's Process (i) Zirconiu			Zirconiu	n, Titanium				
	(b)	Van A	Arkel method	(ii)	Nickel				
	(c)	Zone	refining	(iii)	Silicon,	Germa	anium		
	(d)	d) Electrolytic refining (iv) Copper, S			Silver	ilver			
		(A)	(a)-(ii), (b)-(i), (c)-(iii),	(d)-(i	v)	(B)	(a)–(i), (b)–(ii), (c)–(iv), (d)–(iii)		
		(C)	(a)–(iv), (b)–(iii), (c)–(iii)), (d)–((i)	(D)	(a)-(iii), (b)-(iv), (c)-(i), (d)-(ii)		
76.	76. In the Born-Haber Cycle for the formation of sodium chloride (NaCl), the following are involved:				hloride (NaCl), the following steps				
	 (i) Sublimation of Na(s) → Na(g) (ii) Ionization of Na(g) → Na⁺(g)+e⁻ (iii) Dissociation of Cl₂(g) → 2Cl(g) (iv) Electron affinity of Cl(g)+e⁻ → Cl⁻(g) (v) Formation of NaCl(s) from Na⁺(g) and Cl⁻(g) Which of the above steps is endothermic? 								
		(A)	(iv) and (v) Only			(B)	(ii) and (iv) Only		
		(C)	(i), (ii) and (iii) Only			(D)	(i), (iii) and (v) Only		
		. ,				. ,	•		

77.	Rate of di	fusion of a gas is :
	(A)	Directly proportional to square root of pressure and inversely proportional to density
	(B)	Directly proportional to pressure and inversely proportional to square root of density
	(C)	Directly proportional to square root of pressure and inversely proportional to square root of density

(D) Directly proportional to pressure and inversely proportional to density

18.	which among the following i	s a path dependent thermodynamic function?	
	(A) H	(B) S	

79. What will be the change in entropy of 2 moles of an ideal gas expanding to ten times its volume at 27° C?

(A)
$$38.3 \text{ JK}^{-1}$$
 (B) 16.62 JK^{-1} (C) -19.15 JK^{-1} (D) 19.15 JK^{-1}

80. Based on the reaction $2SO_2 + O_2 \implies 2SO_3 + 198$ kJ/mol, the decomposition of SO_3 will be favoured:

- (A) At high pressure and low temperature
- (B) At low pressure and high temperature
- (C) At high pressure and high temperature
- (D) At low pressure and low temperature

81. Choose the wrong relationship among the following:

(A)
$$K_c(RT)^{\Delta n} = K_x P^{\Delta n}$$
 (B) $K_x = K_p P^{-\Delta n}$

(C)
$$K_p = K_c (PV/n_{total})^{\Delta n}$$
 (D) $K_p = K_x V^{\Delta n}$

82. In a reaction between A and B, doubling [A] quadruples the reaction rate and tripling [B] makes the rate one-third of its original value. What will be the overall order of the reaction?

(C)
$$3$$
 (D) -1

- 83. Which of the following statements about fluorescence and phosphorescence is incorrect?
 - (A) Fluorescence is prompt emission from an excited singlet state returning directly to the ground state
 - (B) Phosphorescence is a delayed radiative transition between two states of same multiplicity
 - (C) Both involve photon emission after excitation, differing only in the spin multiplicity of the emitting state
 - (D) Phosphorescence arises when a triplet state, formed via intersystem crossing, relaxes slowly to the singlet ground state
- 84. Which among the following is not an example of homogeneous catalysis?
 - (A) Acid catalyzed hydrolysis of ethyl acetate
 - (B) Decomposition of ozone in stratosphere by NO_x
 - (C) Bromination of ethylene in a glass vessel
 - (D) Acid catalyzed conversion of starch to glucose
- **85.** In the adsorption of a gas on solid adsorbent,
 - (A) $\Delta S = +ve$ and $\Delta H = -ve$
 - (B) $\Delta S = -ve$ and $\Delta H = -ve$
 - (C) $\Delta H = +ve \text{ and } \Delta G = -ve$
 - (D) $\Delta G = -ve \text{ and } \Delta S = +ve$
- **86.** Which of the following statements correctly defines the Gold Number?
 - (A) It is the minimum volume of gold sol (in mL) required to prevent the coagulation of 10 mL of a protective colloid when 1 mL of 10% NaCl is added.
 - (B) It is the minimum mass of NaCl (in mg) required to coagulate 10 mL of gold sol in presence of 1 mg of a protective colloid.
 - (C) It is the minimum amount of a protective colloid (in mg) required to prevent the coagulation of 10 mL of a gold sol when 10 mL of 1% NaCl is added.
 - (D) It is the minimum amount of a protective colloid (in mg) required to prevent the coagulation of 10 mL of gold sol in the presence of 1 mL of 10% NaCl
- **87.** In the decomposition of calcium carbonate at constant temperature, maximum number of phases which can coexist in equilibrium is:

(A) 1

(B) 2

(C) 3

(D) 4

88.	During electrolysis, equal amounts of electric charge are passed through the solutions of $CuSO_4$ and $AgNO_3$. Which of the following statement is incorrect?							
		(A)	More silver is deposited than cop electrons to be reduced than copper i	_	ecause silver ions requires fewer			
		(B)	Less silver is deposited than copper because copper ions are divalent and this makes the deposition per ion higher.					
		(C)	Less copper is deposited than silver because the atomic mass to charge ratio of copper is less than that of silver					
		(D)	The mass of deposited metal depends on both the number of electrons transferred per ion and the equivalent masses of the metals.					
89.		e extraordinary stability of carbon-carbon bonds in organic compounds is primarily e to:						
		(A)	High bond enthalpy resulting from ea	ffective	e p-p overlap			
		(B)	Presence of hydrogen atoms nearby					
		(C)	Resonance stabilization in all carbon	bonds				
		(D)	High polarity of C–C bond					
90.	The	hybri	disation of carbon atoms in C - C single	bond o	of $HC \equiv C - CH = CH$ is:			
		(A)	$\mathrm{sp^3\text{-}sp^3}$	(B)	$\mathrm{sp^2}\text{-}\mathrm{sp^3}$			
		(C)	$\mathrm{sp}\text{-}\mathrm{sp}^2$	(D)	$\mathrm{sp}^3\text{-}\mathrm{sp}$			
91.	Choose the correct IUPAC for $CH_3 - CH(CH_2CH_3) - CHO$:				НО :			
		(A)	butan-2-aldehyde	(B)	2-methylbutanal			
		(C)	3-methylisobutyraldehyde	(D)	2-ethylpropanal			
92.	92. Match the following:							
	List I			List II				
	(i) propanamine and N-methylethanamine		(a)	metamers				
	(ii) hexan-2-one and hexan-3-one		(b)	positional isomers				
	(iii) ethanamide and hydroxyethanamide		(c)	functional isomers				
	(iv)	(iv) o-nitrophenol and p-nitrophenol		(d)	tautomers			
		(A)	(i)-(b), (ii)-(c), (iii)-(a), (iv)-(d)					
		(B)	(i)-(c), (ii)-(d), (iii)-(a), (iv)-(b)					
		(C)	(i)-(d), (ii)-(c), (iii)-(a), (iv)-(b)					
		(D)	none of these					

93. Resonance structure of the molecule does not have :						
(A) identical arrangement of atoms						
	(B)	nearly the same energy content				
	(C)	the same number of paired electrons				
	(D)	identical bonding				
94.	Which am	n among the following has highest nucleophilicity?				
	(A)	F^-	(B)	OH^-		
	(C)	CH_{3^-}	(D)	NH_{2^-}		
95.	95. The most reactive towards electrophilic substitution:					
	(A)	nitrobenzene	(B)	aniline		
	(C)	anilinehydrochloride	(D)	N-acetylaniline		
96.	Which of t	the following ions is aromatic?				
	(A)	Cyclopentadienyl anion	(B)	Cyclopentadienyl cation		
	(C)	Cyclobutadienyl anion	(D)	Cycloheptatrienyl anion		
97.	The cataly	est used for polymerisation of olefins is	:			
	(A)	Ziegler-Natta catalyst	(B)	Wilkinsons catalyst		
	(C)	pd-catalyst	(D)	Zeise's complex		
98.	The sequence in structure of nucleic acid is:					
	(A)	base + phosphate + pentose				
	(B)	phosphate + pentose + base				
	(C)	base + pentose + phosphate				
	(D)	All are correct				
99.	The Vitamin that contains both nitrogen and sulphur is					
	(A)	Vitamin A	(B)	Vitamin B1		
	(C)	Vitamin B12	(D)	Vitamin C		
100.	Which am	ong the following exhibit stereoisomeris	sm?			
	(A)	2-methylbutene-1	(B)	3-methylbutyne-3		
	(C)	3-methylbutanoic acid	(D)	2-methylbutanoic acid		

SPACE FOR ROUGH WORK

SPACE FOR ROUGH WORK