158/2025

Question Booklet Alpha Code

	,
A	
\mathbf{A}	

Question Booklet Serial Number

Total No. of questions: 100 Time: 1 Hour 30 Minutes

Maximum: 100 Marks

INSTRUCTIONS TO CANDIDATES

- 1. The question paper will be given in the form of a Question Booklet. There will be four versions of question booklets with question booklet alpha code viz. A, B, C & D.
- 2. The Question Booklet Alpha Code will be printed on the top left margin of the facing sheet of the question booklet.
- 3. The Question Booklet Alpha Code allotted to you will be noted in your seating position in the Examination Hall.
- 4. If you get a question booklet where the alpha code does not match to the allotted alpha code in the seating position, please draw the attention of the Invigilator IMMEDIATELY.
- 5. The Question Booklet Serial Number is printed on the top right margin of the facing sheet. If your question booklet is un-numbered, please get it replaced by new question booklet with same alpha code.
- 6. The question booklet will be sealed at the middle of the right margin. Candidate should not open the question booklet, until the indication is given to start answering.
- 7. Immediately after the commencement of the examination, the candidate should check that the question booklet supplied to him contains all the 100 questions in serial order. The question booklet does not have unprinted or torn or missing pages and if so he/she should bring it to the notice of the Invigilator and get it replaced by a complete booklet with same alpha code. This is most important.
- 8. A blank sheet of paper is attached to the question booklet. This may be used for rough work.
- 9. Please read carefully all the instructions on the reverse of the Answer Sheet before marking your answers.
- 10. Each question is provided with four choices (A), (B), (C) and (D) having one correct answer. Choose the correct answer and darken the bubble corresponding to the question number using Blue or Black Ball-Point Pen in the OMR Answer Sheet.
- 11. Each correct answer carries 1 mark and for each wrong answer 1/3 mark will be deducted. No negative mark for unattended questions.
- 12. No candidate will be allowed to leave the examination hall till the end of the session and without handing over his/her Answer Sheet to the Invigilator. Candidates should ensure that the Invigilator has verified all the entries in the Register Number Coding Sheet and that the Invigilator has affixed his/her signature in the space provided.
- 13. Strict compliance of instructions is essential. Any malpractice or attempt to commit any kind of malpractice in the Examination will result in the disqualification of the candidate.

158/2025

Time: 1 hour and 30 minutes 1. The wavelength of second line of the Lyman series (Rydberg constant = $10^7 \,\mathrm{m}^{-1}$) is : (A) 300 nm (B) 510 nm(C) 888.8 nm (D) 112.5 nm2. Match the following List A (Molecule) with List B (Shape): List - A List - B (a) NH_3 (i) Tetrahedral (b) H_2O (ii) Pyramidal (c) CH_4 (iii) V shape (A) (a)-(i), (b)-(ii), (c)-(iii) (a)-(i), (b)-(iii), (c)-(ii) (B) (C) (a)-(ii), (b)-(iii), (c)-(i) (D) (a)-(iii), (b)-(ii), (c)-(i) 3. Which of the following statements is/are correct?

Maximum: 100 marks

- o. Which of the following statements is are correct.
 - (i) PbCl_2 is more stable than PbCl_4 due to inert pair effect
 - (ii) Boron shows diagonal relationship with Magnesium
 - (iii) $PbCl_4$ is more stable than $PbCl_2$ due to inert pair effect
 - (A) Only (i)
 - (B) Only (ii)
 - (C) Only (iii)
 - (D) Both (ii) and (iii)
- **4.** The element which has highest electron affinity is:
 - (A) Chlorine

(B) Fluorine

(C) Oxygen

(D) Nitrogen

5. Match the following List A (Molecule) with List B (Hybridization):				oridization) :		
		List -	- A		List -	- B
	(a)	SF_6		(i)	sp	
	(b)	CH_4		(ii)	${ m sp}^3$	
	(c)	$\mathrm{BeF}_{\!\scriptscriptstyle 2}$		(iii)	$\mathrm{sp}^3\mathrm{d}^2$	2
		(A)	(a)-(ii), (b)-(iii), (c)-(i)		(B)	(a)-(ii), (b)-(i), (c)-(iii)
		(C)	(a)-(iii), (b)-(i), (c)-(ii)		(D)	(a)-(iii), (b)-(ii), (c)-(i)
6.	Whi	ch of t	the following molecules has a bon	d orde	er of 3	?
		(A)	NO		(B)	CO
		(C)	O_2		(D)	F_2
7.	Born	n-Hab	er cycle helps to determine :			
		(A)	Bond order		(B)	Entropy
		(C)	Specific heat capacity		(D)	Lattice energy
8.	Whi	ch of t	the following sets of quantum nur	nbers	is not	permitted?
		(A)	$n = 4, 1 = 2, m = 0, s = +\frac{1}{2}$			
		(B)	$n = 3, 1 = 2, m = -2, s = -\frac{1}{2}$			
		(C)	$n = 4, l = -1, m = 0, s = +\frac{1}{2}$			
		(D)	$n = 3, l = 0, m = 0, s = -\frac{1}{2}$			
9.	The	wave	elength (λ) associated with a r	nicros	scopic	particle of mass 2×10 ⁻¹⁹ kg and
	velo	city 10) ⁵ m/s is :			
		(A)	$3.31 \times 10^{-20} \text{ m}$		(B)	$6.63 \times 10^{-20} \; \mathrm{m}$
		(C)	$3.31 \times 10^{-24} \text{ m}$		(D)	$3.31 \times 10^{-14} \text{ m}$
10.	Whi	ch of t	the following statements is/are co	rrect?	1	
	(i)	Inte	rmolecular hydrogen bonding is p	resen	t in p-	nitrophenol
	(ii)	Boili	ing point of p-nitrophenol is higher	er tha	n o-nit	trophenol
	(iii)	Intra	amolecular hydrogen bonding is p	oresen	ıt in p-	nitrophenol
		(A)	Only (i)		(B)	Only (ii)
		(C)	Only (iii)		(D)	Both (i) and (ii)

11. Which among the following are not correct statements about Werner's co-or theory?					nts about Werner's co-ordination
	(i)	In co	omplexes, metal exhibit two ty	pes of valencie	S.
	(ii)		nary valency corresponds to tesponds to the oxidation state		on number and secondary valency
	(iii)	Ever	y metal atom has fixed numb	er of secondary	valencies.
	(iv)	Prin	nary valencies are satisfied by	positive ions.	
		(A)	(i), (ii)	(B)	(ii), (iv)
		(C)	(ii), (iii)	(D)	(i), (iv)
12.		ng th	_	ompounds, fac	ial and meridional isomerism is
		(A)	$[\mathrm{Co(NH_3)_5Cl}]\mathrm{Cl_2}$	(B)	$[\mathrm{Co(NH_3)_4Cl_2}]\mathrm{Cl}$
		(C)	$[\mathrm{Co(en)}_3]\mathrm{Cl}_3$	(D)	$\left[\mathrm{Co(NH_3)_3Cl_3}\right]$
13.	For a	an oct	ahedral high spin d^4 system,	CFSE is equal	to:
		(A)	$-0.4\Delta_0$	(B)	$-0.8\Delta_0$
		(C)	$-0.6\Delta_0$	(D)	$-1.6\Delta_0$
14.	The	compo	ound which exhibit Jahn-Tello	er distortion is :	
		(A)	$[\mathrm{Mn}(\mathrm{H_2O})_{\!6}]^{3+}$	(B)	$\left[\mathrm{Mn(H_2O)}_6\right]^{2+}$
		(C)	$\left[\mathrm{Cr}(\mathrm{H_2O})_{\!\scriptscriptstyle{6}}\right]^{\scriptscriptstyle{3+}}$	(D)	$[\mathrm{Fe}(\mathrm{CN})_6]^{4-}$
15.	Whi	ch tec	hnique is used to determine t	he CFSE of tran	nsition metal complexes?
		(A)	IR spectroscopy	(B)	UV - Visible Spectroscopy
		(C)	NMR - spectroscopy	(D)	MW spectroscopy
16.	Whi	ch am	ong the following contains bri	dged carbonyl ş	group?
		(A)	$\mathrm{Fe(CO)}_{5}$	(B)	$\mathrm{Fe_2(CO)_9}$
		(C)	$\mathrm{Co_2(CO)_8}$ in solution	(D)	$\operatorname{Cr}(\operatorname{CO})_6$
17.	Iden	tify th	ne first row transition metal (M) for HM(CO)	species following 18 e rule:
		(A)	Co	(B)	Cr
		(C)	Mn	(D)	Fe
18.	The	water	splitting enzyme in photosyn	thesis is:	
		(A)	$\mathrm{Mo_4O_4}$ Cluster	(B)	${ {\rm Mg}_4 {\rm O}_4}$ Cluster
		(C)	Cr_4O_4 Cluster	(D)	$\mathrm{Mn_4O_4}$ Cluster
158/	/2025			5	A [P.T.O.]

19.	Mate	ch the	following:			
		Colu	mn – I		Colu	ımn – II
	(i)	Hem	noglobin	(a)	Fe -	storage
	(ii)	Tran	nsferrin	(b)	e tra	ansfer agent
	(iii)	Ferr	itin	(c)	Fe -	transport
	(iv)	Ferr	edoxin	(d)	Oxy	gen transport
		(A)	(i)-(d), (ii)-(a), (iii)-(c), (iv)-(b)		(B)	(i)-(a), (ii)-(b), (iii)-(c), (iv)-(d)
		(C)	(i)-(d), (ii)-(c), (iii)-(b), (iv)- (a)		(D)	(i)-(d), (ii)-(c), (iii)-(a), (iv)-(b)
20.	The	Fe-S ן	protein present in nitrogenase is:	:		
		(A)	$\mathrm{Fe_2S_2}$		(B)	$\mathrm{Fe_4S_4}$
		(C)	$\mathrm{Fe}_3\mathrm{S}_4$		(D)	$\mathrm{Fe}_{5}\mathrm{S}_{4}$
21.	Whi	ch of t	the following species does not exh	ibit hy	perco	onjugation?
		(A)	$(\mathrm{CH_3})_2\mathrm{CH} - \mathrm{CH} = \mathrm{CH}_2$		(B)	$\mathrm{CH}_3 - \mathrm{CH} = \mathrm{CH}_2$
		(C)	$\mathrm{CH_3} - \mathrm{CH_2}^+$		(D)	$\mathrm{CH}_2 = \mathrm{CH}_2$
22.	Sele	ct the	correct order of increasing acid s	trengt	h:	
		(A)	$\mathrm{CH_{3}CH_{2}COOH} < \mathrm{CH_{3}COOH} < \mathrm{H}$	COOI	$H < C_{\epsilon}$	$_5\mathrm{H}_5\mathrm{COOH}$
		(B)	$\mathrm{CH_{3}CH_{2}COOH} < \mathrm{CH_{3}COOH} < \mathrm{C}$	₆ H ₅ CC)OH <	< HCOOH
		(C)	$C_6H_5COOH < CH_3COOH < CH_3COOH < CH_3COOH $	CH ₂ CC)OH <	< HCOOH
		(D)	$\mathbf{HCOOH} < \mathbf{CH}_{3}\mathbf{COOH} < \mathbf{CH}_{3}\mathbf{CH}_{2}$	COOl	H < C ₆	$_{3}\mathrm{H}_{5}\mathrm{COOH}$
23.	The	shape	e of a singlet carbene is :			
		(A)	Linear		(B)	Bent
		(C)	Trigonal planar		(D)	Tetrahedral
24.	The	major	product formed by the addition	of HB	r to p	propene in the presence of peroxide

(B) 2- bromopropane

(D) Allyl bromide

is:

(A) 1-bromopropane

(C) 1,2-dibromopropane

25. Identify the Sawhorse projection formula of tartaric acid:

(C)
$$\stackrel{\text{HO}_2\text{C}}{\underset{\text{HO}}{\bigvee}}\stackrel{\text{OH}}{\underset{\text{CO}_2\text{H}}{\bigvee}}$$

$$(D) \qquad \text{HO} \qquad \text{OH} \qquad \text{OH}$$

26. Select the correct R and S configuration of the compound :

(A) 2R, 3S

(B) 2R, 3R

(C) 2S, 3S

(D) 2S, 3R

27. Stereoisomers that contain chiral carbon atoms but are optically inactive are called:

(A) Enantiomers

(B) Diastereomers

(C) Meso compounds

(D) Epimers

28. Select the method that is not used for the separation of racemic mixtures:

- (A) Mechanical separation
- (B) Biochemical method
- (C) Chemical method
- (D) Distillation under reduced pressure

29. The E-Z system of nomenclature is used to identify:

(A) Optical isomers

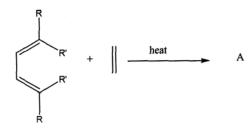
- (B) Geometrical isomers
- (C) Conformational isomers
- (D) Structural isomers

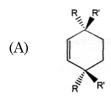
30. The configuration of the product formed by the unimolecular nucleophilic substitution reaction of an optically active alkyl halide is:

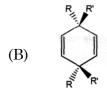
(A) Completely retained

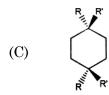
(B) Completely inverted

(C) A racemic mixture


(D) Same as that of the reactant


- 31. Phenanthrene belongs to ______ class of organic compound.
 - (A) Anti-aromatic


(B) Non-aromatic


(C) Homoaromatic

- (D) Aromatic
- **32.** Name the reaction and the product, when bromobenzene is treated with bromomethane in presence of Na:
 - (A) Toluene and Wurtz Fittig reaction
 - (B) Biphenyl and Wurtz reaction
 - (C) Ethane and Wurtz reaction
 - (D) Methyl benzene and Wurtz reaction
- **33.** Predict the product of given reaction :

- 34. Which among the following will give an acetylide ion on reaction with propyne?
 - (A) NH₃

(B) NaOH

(C) NaNH₂

- (D) All the above
- 35. Reactivity order of halides for dehydrohalogenation reaction:
 - (A) R-F > RCl > R-Br > R-I
 - (B) R-I > R-Cl > R-Br > R-F
 - (C) R-I > R-Br > R-Cl > R-F
 - (D) R F > R I > R Br > R Cl

Deiser's in	ethod is used to estimate		
(A)	Halogens	(B)	Alcohols
(C)	Ethers	(D)	Esters
		orth	o and para substitution with
(A)	$\mathrm{HNO}_{3}, \mathrm{H}_{2}\mathrm{SO}_{4}$	(B)	$\mathrm{Br}_{2}/\mathrm{Fe}$
(C)	$\mathrm{AlCl}_3,\mathrm{CH}_3\mathrm{Cl}$	(D)	All the above
CH_3 – CH	$_{2}$ - CH $_{2}$ - Br $\xrightarrow{\text{KOH(alc)}}$ A $\xrightarrow{\text{HBr}}$ B $\xrightarrow{\text{KOH(alc)}}$	OH(aq)	\rightarrow C predict the product C :
(A)	Propene	(B)	Propan-2-ol
(C)	Propanol	(D)	All the above
Which of	the following statement is incorrect abo	ut Joi	ne's reagent?
(A)	The reagent is chromic acid and H ₂ SO	0_4 in	acetone
(B)	It oxidise primary alcohol to aldehyde		
(C)	It will not oxidise double bonds presen	nt in a	alcohols
(D)	It will not oxidise secondary alcohols		
What is th	ne colour of sodium salt of indophenol in	ı Libe	ermann nitroso reaction?
(A)	Pink	(B)	Orange
(C)	Green	(D)	Blue
Which of	the following correctly describes the str	uctur	e of cholesterol?
Which of the (A)	Cholesterol possesses a fused tetrac and one five-membered rings, a doub group at C3.	yclic	nucleus with three six-membered
	Cholesterol possesses a fused tetrac and one five-membered rings, a doub	yclic ole bo oberec	nucleus with three six-membered nd between C7-C8 and a carbonyl d and one five-membered rings,
(A)	Cholesterol possesses a fused tetrace and one five-membered rings, a double group at C3. Cholesterol contains three six-mem	yclic ble bo bered 3 – hyd	nucleus with three six-membered nd between C7-C8 and a carbonyl d and one five-membered rings, droxyl group at C3.
(A) (B)	Cholesterol possesses a fused tetrace and one five-membered rings, a doubt group at C3. Cholesterol contains three six-mem a double bond between C5-C6 and a A Cholesterol has four six-membered rings.	yclic ble bo bered g-hyc ngs, s	nucleus with three six-membered nd between C7-C8 and a carbonyl d and one five-membered rings, droxyl group at C3. a double bond between C5-C6 and and one five-membered rings, two
(A) (B) (C) (D)	Cholesterol possesses a fused tetrace and one five-membered rings, a doubt group at C3. Cholesterol contains three six-mem a double bond between C5-C6 and a A Cholesterol has four six-membered ring a hydroxyl group at C17. Cholesterol possesses three six-membered ring a hydroxyl group at C17.	yclic ble both bered an α	nucleus with three six-membered nd between C7-C8 and a carbonyl d and one five-membered rings, droxyl group at C3. a double bond between C5-C6 and and one five-membered rings, two hydroxyl group at C3.
(A) (B) (C) (D)	Cholesterol possesses a fused tetrace and one five-membered rings, a double group at C3. Cholesterol contains three six-mem a double bond between C5-C6 and a A Cholesterol has four six-membered ring a hydroxyl group at C17. Cholesterol possesses three six-membered possesses possesses three six-membered possesses pos	yclic ble both bered an α	nucleus with three six-membered nd between C7-C8 and a carbonyl d and one five-membered rings, droxyl group at C3. a double bond between C5-C6 and and one five-membered rings, two hydroxyl group at C3.
	Which a chlorobens (A) (C) CH ₃ – CH (A) (C) Which of t (A) (B) (C) (D) What is th (A) (C)	Which among the following reagent give chlorobenzene? (A) HNO ₃ , H ₂ SO ₄ (C) AlCl ₃ , CH ₃ Cl CH ₃ - CH ₂ - CH ₂ - Br KOH(alc) A HBr B KOH(alc) A Propene (C) Propanol Which of the following statement is incorrect about (A) The reagent is chromic acid and H ₂ SO(B) It oxidise primary alcohol to aldehyde (C) It will not oxidise double bonds presert (D) It will not oxidise secondary alcohols What is the colour of sodium salt of indophenol in (A) Pink (C) Green	Which among the following reagent give ortholorobenzene? (A) HNO_3, H_2SO_4 (B) (C) $AlCl_3, CH_3Cl$ (D) $CH_3 - CH_2 - CH_2 - Br \xrightarrow{KOH(ale)} A \xrightarrow{HBr} B \xrightarrow{KOH(aq)} B$ (A) Propene (B) (C) Propanol (D) Which of the following statement is incorrect about Joseph (A) The reagent is chromic acid and H_2SO_4 in (B) It oxidise primary alcohol to aldehyde (C) It will not oxidise double bonds present in a (D) It will not oxidise secondary alcohols What is the colour of sodium salt of indophenol in Liber (A) Pink (B) (C) Green (D)

43.	Which of	the following alkaloids conta	ains a phenanthro	ene ring?
	(A)	Papaverine	(B)	Atropine
	(C)	Morphine	(D)	Quinine
44.	Which to	xic alkaloid, responsible fo	r the death of the	he Greek Philosopher Socrates in
	399 B.C.,	is obtained from the poisono	ous plant hemlock	κ ?
	(A)	Morphine	(B)	Coniine
	(C)	Quinine	(D)	Nicotine
45.	Which val	lue is used to determine ave	rage molecular w	reight of fatty acids in fats?
	(A)	Acid value	(B)	Iodine value
	(C)	Saponification value	(D)	Reichert-Meissl value
46.	Which am	nong the following is a mono	cyclic monoterpe	noid?
	(A)	Citral	(B)	Geraniol
	(C)	Menthol	(D)	Limonene
47.	In lecithir	n, the phosphate group is ty	pically attached t	o the glycerol backbone at :
	(A)	C - 1	(B)	C - 2
	(C)	C - 3	(D)	C - 4
48.	Identify the	he steroid hormone from the	e list :	
	(A)	Epinephrine	(B)	Cortisol
	(C)	Vasopressin	(D)	TSH
49.	The cobal	t atom present in the core st	tructure is charac	eteristic of which vitamin?
	(A)	Vitamin B ₆	(B)	Vitamin B ₁₂
	(C)	Vitamin B ₃	(D)	Vitamin C
50.	Which vit	amin is classified chemicall	y as a terpenoid?	
	(A)	Vitamin A	(B)	Vitamin B ₁
	(C)	Vitamin B ₁₂	(D)	Vitamin C
51.	RMS velo	city of N_2 at 300 K (M = 28	g/mol) is approxi	mately:
	(A)	200 m/s	(B)	300 m/s
	(C)	517 m/s	(D)	600 m/s

(C)	Proportional to molecular size		
(D)	Independent of pressure		
Equal ma	asses of CH_4 and O_2 are place	ed in a cont	tainer at constant T. If the total
pressure i	s 900 mm, what is the partial pr	essure of CH	${ m H_4}$?
(A)	600 mmHg	(B)	450 mmHg
(C)	300 mmHg	(D)	150 mmHg
		ise the surfa	ace tension of water when added at
(A)	Sodium dodecyl sulfate (anionic	c surfactant)	
(B)	Ethanol (a small alcohol)		
(C)	Long-chain alcohol (surface-act	ive)	
(D)	NaCl (Simple electrolyte)		
		_	RMS speed (Urms), average speed
(A)	Ump > Urms > Uavg	(B)	Uavg > Ump > Urms
(C)	Urms > Uavg > Ump	(D)	Urms > Ump > Uavg
The Kraf t	t temperature (Krafft point) of	a detergent i	is:
(A)		_	t becomes completely miscible in
(B)	The temperature at which the glycerol.	e detergent	decomposes into fatty acids and
(C)	The temperature at which surfa	ace tension o	of water becomes zero.
(D)	The temperature at which m precipitation occurs.	icelles brea	k down into individual ions and
An X-ray	diffraction experiment uses (CuKα radia	ation with wavelength $\lambda = 1.00 \text{Å}$.
A second-	order Bragg diffraction $(n = 2)$	is observed	at an angle $2\theta = 60^{\circ}$. What is the
interplana	ar spacing d (in Å)?		
	0.00 Å	(B)	1.00 Å
(A)	2.00 Å	(D)	1.00 A
(A) (C)	2.00 Å 0.50 Å	(D)	1.50 Å
	(D) Equal mapressure in (A) (C) Which of the low concert (A) (B) (C) (D) For an ide (Uavg) and (A) (C) The Kraft (A) (B) (C) (D) An X-ray A second-interplant	Equal masses of CH ₄ and O ₂ are place pressure is 900 mm, what is the partial pressure is 900 mm, while parti	Equal masses of CH ₄ and O ₂ are placed in a compressure is 900 mm, what is the partial pressure of CH ₄ (A) 600 mmHg (B) (C) 300 mmHg (D) Which of the following solutes will increase the surfallow concentration? (A) Sodium dodecyl sulfate (anionic surfactant) (B) Ethanol (a small alcohol) (C) Long-chain alcohol (surface-active) (D) NaCl (Simple electrolyte) For an ideal gas, the correct relationship between F(Uavg) and most probable speed (Ump) is: (A) Ump > Urms > Uavg (B) (C) Urms > Uavg > Ump (D) The Kraft temperature (Krafft point) of a detergent water and micelles start to form (B) The temperature at which the detergent glycerol. (C) The temperature at which surface tension of the complex of the c

[P.T.O.]

52. Mean free path is:

(A) Distance between two molecules

(B) Average distance between successive collisions

58.	Mate	ch Col	lumn A with Column B :			
			Column A			Column B
	(i)		y Centred Cubic (BCC)	(P)		rdination number = 12
	(ii)		e Centred Cubic (FCC)	(Q)	Coo	rdination number = 8
	(iii)	NaC	l crystal structure	(R)	FCC	Carrangement of Cl ⁻ ions
	(iv)	Brav	vais Lattices	(S)		al 14 possible angements
	(v)	CsC	l structure	(T)	BCC	C arrangement of Cl ⁻ ions
		(A)	(i)-(Q), (ii)-(P), (iii)-(T), (iv)-(S), (v	v)-(R)		
		(B)	(i)-(Q), (ii)-(P), (iii)-(R), (iv)-(S), (v)-(T)		
		(C)	(i)-(P), (ii)-(Q), (iii)-(R), (iv)-(S), (v)-(T)		
		(D)	(i)-(P), (ii)-(Q), (iii)-(T), (iv)-(S), (v	v)-(R)		
59 .	Iden	tify th	ne incorrect statement :			
		(A)	Crystalline solids have definite	meltin	g poi	nt
		(B)	Amorphous solids are isotropic			
		(C)	Crystalline solids are anisotropi	c		
		(D)	Glass is an anisotropic solid			
60.	A so	lid ha	s the following lattice parameters	3:		
	a = 0	b=c;	$\alpha = \beta = \gamma \neq 90^{\circ}$			
	whic	eh typ	e of crystal system does it belong	to?		
		(A)	Rhombohedral (Trigonal)		(B)	Orthorhombic
		(C)	Tetragonal		(D)	Hexagonal
61.	The	dispe	rsed phase and dispersion mediur	n in sr	noke	are respectively:
		(A)	Liquid and gas		(B)	Gas and liquid
		(C)	Solid and gas		(D)	Gas and solid
62.	A s	mall	quantity of FeCl ₃ is added t	o a f	reshl	y prepared $Fe(OH)_3$ precipitate.
	The	proce	ss is called :			
		(A)	Double decomposition		(B)	Peptisation
		(C)	Condensation		(D)	Coagulation
63.			nl 10% NaCl is added to 10 ml a lation is just prevented. The gold	_		the presence of 0.025 g of starch, starch will be:
		(A)	25		(B)	2.5
		(C)	0.25		(D)	10
158/	2025	ı	12			A

	(A)	It is reversible					
	(B)	Forces involved are weak					
	(C)	It is favoured by high temperature and low pressure					
	(D)	It is favoured by low temperature and high pressure					
65.	For Freun be :	dlich adsorption isotherm, when log x	/m is p	plotted against log P, the slope will			
	(A)	n	(B)	1/n			
	(C)	log 1/n	(D)	log K			
66.	The rate of reaction in	constant for a first order reaction is a seconds?	$0.01 \mathrm{s}^{-3}$	1. What will be the half-life of the			
	(A)	69.3	(B)	100			
	(C)	10	(D)	6.93			
67.	For a first	order reaction, a plot of rate versus co	ncent	ration of reactant will be:			
	(A)	Curve with negative slope	(B)	Curve with positive slope			
	(C)	Straight line with negative slope	(D)	Straight line with positive slope			
68.	The rate c	onstant of a reaction with activation e	nergy	zero will be :			
	(A)	Zero	(B)	Independent of temperature			
	(C)	Decreases with temperature	(D)	Increases with temperature			
69.	For the re	action $CO_2(g) + H_2(g) \rightleftharpoons CO(g) + H_2O(g)$	(g), in	crease of pressure will:			
	(A)	Have no effect on equilibrium constant	nt				
	(B)	Decrease the equilibrium constant					
	(C)	Favour forward reaction					
	(D)	Favour backward reaction					
70.	A change reaction?	in which of the following factors wi	ll shif	t the position of equilibrium in a			
	(A)	Temperature	(B)	Concentration			
	(C)	Pressure	(D)	All the above			
71.	Which of t	the following is a systematic error ?					
	(A)	Instrumental zero error					
	(B)	Random fluctuation in readings					
	(C)	Error due to parallax while reading s	cale				
	(D)	Human estimation in end-point detec	etion				

64. Which of the following is not true about physisorption?

72.	Match the following types of errors with t Type of error				their suitable examples: Example				
	(a) Gross error		(1)	Reading meniscus from different angles					
	(b)	Syste	ematic error	(2)	Cons read	stant drift in balance ing			
	(c)	Rand	lom error	(3)	Spill titra	age of titrant during tion			
	(d)	Perso	onal error	(4)	Wror value	ngly recording data e			
	(e)	Instr	umental error	(5)	Wrong calibration of burette				
		(A)	(a)-(3), (b)-(1), (c)-(4), (d)-(2), (e)-(5)					
		(B)	(a)-(4), (b)-(5), (c)-(3), (d)-(2), (e)-(1)					
		(C)	(a)-(5), (b)-(3), (c)-(1), (d)-(4), (e)-(2)					
		(D)	(a)-(3), (b)-(5), (c)-(1), (d)-(4), (e)-(2)					
73.	Which of the following statements is incorrect about significant figures?								
	(A) All non-zero digits are signific			ificant					
		(B)	3) Zeros between non-zero digits are significant						
		(C)	Leading zeros before decim	al point a	re sign	ificant			
		(D)	Trailing zeros after decimal point are significant						
74.	Which combination of terms correctly describes the distribution of random errors ?								
		(A)	Skewed, asymmetric		(B)	Bell-shaped, symmetric			
		(C)	Flat, uniform		(D)	Stepwise, irregular			
75 .	Wh acid		the following radicals is no	$oldsymbol{t}$ eliminat	ed by	treatment with concentrated nitric			
		(A)	Oxalate		(B)	Phosphate			
		(C)	Arsenite		(D)	Chromate			
76 .	In t	he pre	paration of sodium-carbonat	te extract,	boiling	g the mixture helps to :			
		(A)	Decompose organic matter	only					
		(B)	Convert insoluble salts to s	soluble car	bonate	es and release acid radicals			
		(C)	Remove cations from the m	nixture					
		(D)	Form insoluble hydroxides						

77. Match Column I with Column II correctly and select the right option :

Column I

Column II

- (i) Nucleation (a) Formation of tiny particles (embryos) of a new phase
- (ii) Co-precipitation (b) Impurities carried down with the main precipitate
- (iii) Post-precipitation (c) Formation of a secondary precipitate after the main one
- (iv) Digestion (d) Standing or heating to improve purity and crystal size
- (v) Peptization (e) Re-dispersion of coagulated precipitate into colloidal form
- (vi) Ignition (f) Conversion of precipitate into stable, weighable form
 - (A) (i)-(a), (ii)-(b), (iii)-(c), (iv)-(d), (v)-(e), (vi)-(f)
 - (B) (i)-(a), (ii)-(c), (iii)-(b), (iv)-(d), (v)-(e), (vi)-(f)
 - (C) (i)-(a), (ii)-(b), (iii)-(c), (iv)-(f), (v)-(e), (vi)-(d)
 - (D) (i)-(a), (ii)-(c), (iii)-(b), (iv)-(f), (v)-(e), (vi)-(d)
- **78.** Identify the INCORRECT statement regarding redox indicators :
 - (A) They change colour due to oxidation or reduction of the indicator itself.
 - (B) Diphenylamine is used in the titration of Fe^{2+} with $K_2Cr_2O_7$.
 - (C) The potential at the equivalence point depends on the indicator's redox potential
 - (D) Redox indicators are used in acid-base titrations
- **79.** In an acidic medium, the equivalent weight of potassium dichromate $(K_2Cr_2O_7)$ in a redox titration is:
 - (A) 49 g eq^{-1}

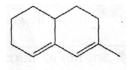
(B) 98 g eq⁻¹

(C) 294 g eq^{-1}

- (D) 147 g eq^{-1}
- 80. Which statement is **correct** regarding **linear regression** in analytical calibration?
 - (A) The slope corresponds to instrument intercept
 - (B) The correlation coefficient is always 0
 - (C) The regression equation expresses concentration as a function of response
 - (D) The regression equation has no practical use

- **81.** Select the *correct* statements from the following :
 - (i) Wave number of MW radiation is higher than IR radiation
 - (ii) Wave length of UV radiation is less than IR radiation
 - (iii) Wave number of MW radiation is less than visible radiation
 - (iv) Wave length of UV radiation is higher than visible radiation
 - (A) Only (i) and (iv)

(B) Only (iii) and (iv)


(C) Only (ii) and (iii)

- (D) Only (i) and (ii)
- 82. Which of the following electronic transition requires highest energy?
 - (A) $n \to \pi^*$ transition

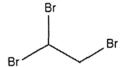
(B) $\sigma \rightarrow \sigma^*$ transition

(C) $n \rightarrow \sigma^*$ transition

- (D) $\pi \to \pi^*$ transition
- **83.** In UV-Visible spectroscopy, the term *hypochromic effect* refers to :
 - (A) Shift to longer wavelength
 - (B) Increase in absorption intensity
 - (C) Shift to shorter wavelength
 - (D) Decrease in absorption intensity
- **84.** Based on Woodward-Fieser rules, the λ_{max} corresponds to the following diene is:

(A) 240 nm

(B) 278 nm


(C) 235 nm

- (D) 273 nm
- **85.** Which of the following cycloalkanone exhibit highest C = O stretching frequency?
 - (A) Cyclobutanone

(B) Cyclopropanone

(C) Cyclohexanone

- (D) Cyclopentanone
- **86.** In the high-resolution ¹H NMR spectrum of the following molecule, the signal corresponds to methylene protons appears as :

(A) Singlet

(B) Doublet

(C) Triplet

(D) Quartet

87.	An organ	ic compound with molecular formu	la C_5	H_{12} gives only one signal in its
	¹ H NMR	spectrum. The compound will be:		
	(A)	Isopentane	(B)	Cyclopentane
	(C)	n-pentane	(D)	Neopentane
88.	In the IR to:	spectrum of alcohols, the broad band i	in the	region 3200-3600 cm ⁻¹ corresponds
	(A)	C-H bending vibration	(B)	O-H bending vibration
	(C)	O–H stretching vibration	(D)	C–O stretching vibration
89.	In the ¹ H nearly at	I NMR spectrum of toluene, the me	thyl p	proton signal appears as a singlet
	•	$\delta = 2.3$ ppm	(B)	$\delta = 1.0$ ppm
		$\delta = 4.1$ ppm	(D)	
	(0)	<i>0</i> = 4.1 ppm	(D)	o = i.1 ppm
90.	Select the	$correct$ statement related to ^{1}H NMR	specti	rum of ethyl acetate:
	(A)	Three signals (all are singlets)		
	(B)	Three signals (singlet, doublet and qu	uartet)
	(C)	Three signals (singlet, triplet and qua	artet)	
	(D)	Two signals (singlet and quartet)		
91.	Which of	the following statement is not correct f	or con	ductometric titration?
	(A)	As the end point in these titrations care is needed near the end point.	is the	intersection of two lines, no extra
	(B)	These titrations can be used for colou	red so	olutions
	(C)	These titrations cannot be used for ve	ery dil	ute solutions
	(D)	These titrations can be used for the acids	titrati	ions of mixture of weak and strong
92.	_	iometry which of the following is us	ed to	predict the variation in potential
	(A)	Ohm's law	(B)	Boyles law
	(C)	Stokes equation	(D)	Nernst equation
93.	In atomic	absorption spectroscopy which of the f	ollowi	ng is used as radiation source?
	(A)	Hollow cathode lamp	(B)	Prism
	(C)	Grating	(D)	Photo multiplier tube
	` '	<u> </u>	` '	•

- 94. Qualitative analysis can be done using flame emission spectroscopy by plotting: (A) Velocity as function of wavelength (B) Emitted intensity as function of wavelength (C) Pressure as a function of wavelength (D) Pressure as function of emitted intensity **95**. Which of the following statement is not correct? In TG mass of sample is monitored as function of temperature (A) (B) DSC is not used to determine the purity of drugs (C) DSC can be used to measure activation energy and rate constant for a particular transition (D) DTA does not require a change in mass of the sample in order to obtain meaningful information 96. The basic principle behind colorimetry: (A) Beer-Lambert's law (B) Boyle's law Hook's law (C) (D) Avagadro's law 97. The resolving power of TEM is derived from: Spherical aberration (A) (B) Specimen (C) Electrons (D) X rays 98. Which of the following is correct for Atomic Force Microscopy (AFM)? (A) AFM do not have high resolution (B) AFM require special treatments that would change or damage the sample (C) AFM do not provide a three dimensional surface profile (D) AFM commonly operated in two modes 99. What does the Rf value in chromatography represent? (A) The ratio of solvent weight to the solute weight (B) The ratio of solute weight to solvent weight Distance travelled by solute divided by distance travelled by solvent front (C)
- 100. In mass spectrometry, McLafferty rearrangement refers to:

(D)

(A) Cleavage of beta bond followed by gamma hydrogen transfer

Distance travelled by solvent front divided by distance travelled by solute

- (B) Cleavage of alpha bond followed by beta hydrogen transfer
- (C) Cleavage of beta bond followed by beta hydrogen transfer
- (D) Cleavage of alpha bond followed by alpha hydrogen transfer

SPACE FOR ROUGH WORK

SPACE FOR ROUGH WORK