
148/2025

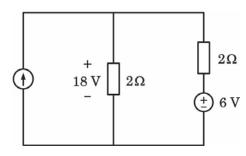
Question Booklet	
Alpha Code	

Question Booklet	
Serial Number	

Total No. of questions: 100 Time: 1 Hour 30 Minutes

Maximum: 100 Marks

INSTRUCTIONS TO CANDIDATES


- The question paper will be given in the form of a Question Booklet. There will be four versions of 1. question booklets with question booklet alpha code viz. A, B, C & D.
- 2. The Question Booklet Alpha Code will be printed on the top left margin of the facing sheet of the question booklet.
- 3. The Question Booklet Alpha Code allotted to you will be noted in your seating position in the Examination Hall.
- 4. If you get a question booklet where the alpha code does not match to the allotted alpha code in the seating position, please draw the attention of the Invigilator IMMEDIATELY.
- The Question Booklet Serial Number is printed on the top right margin of the facing sheet. If your 5. question booklet is un-numbered, please get it replaced by new question booklet with same alpha code.
- 6. The question booklet will be sealed at the middle of the right margin. Candidate should not open the question booklet, until the indication is given to start answering.
- Immediately after the commencement of the examination, the candidate should check that the question booklet supplied to him contains all the 100 questions in serial order. The question booklet does not have unprinted or torn or missing pages and if so he/she should bring it to the notice of the Invigilator and get it replaced by a complete booklet with same alpha code. This is most important.
- 8. A blank sheet of paper is attached to the question booklet. This may be used for rough work.
- 9. Please read carefully all the instructions on the reverse of the Answer Sheet before marking your answers.
- 10. Each question is provided with four choices (A), (B), (C) and (D) having one correct answer. Choose the correct answer and darken the bubble corresponding to the question number using Blue or Black Ball-Point Pen in the OMR Answer Sheet.
- 11. Each correct answer carries 1 mark and for each wrong answer 1/3 mark will be deducted. No negative mark for unattended questions.
- 12. No candidate will be allowed to leave the examination hall till the end of the session and without handing over his/her Answer Sheet to the Invigilator. Candidates should ensure that the Invigilator has verified all the entries in the Register Number Coding Sheet and that the Invigilator has affixed his/her signature in the space provided.
- 13. Strict compliance of instructions is essential. Any malpractice or attempt to commit any kind of malpractice in the Examination will result in the disqualification of the candidate.

148/2025

Maximum: 100 marks

Time: 1 hour and 30 minutes

1. If the voltage across 2Ω resistance is 18V as shown. Assuming ideal sources, what is the strength of the current source :

(A) 3 A

(B) 18 A

(C) 9 A

- (D) None of the above
- **2.** What is the phase of $v(t) = 8\sqrt{3}\sin wt + 8\sin(wt + 90^\circ)$ with respect to $v_1(t) = 4\sin(wt \pi/4)$?
 - (A) 75° lag

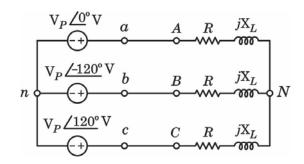
(B) 75° lead

(C) 65° lead

- (D) 65° lag
- 3. An inductor with resistance of 10 ohm is connected in series with a pure capacitor across an AC source of variable frequency. The Q factor of the coil when the circuit is at resonance is 0.5. What is the reactance of the inductor at $\frac{1}{2}$ of the resonance frequency?
 - (A) 2.5Ω

(B) 2Ω

(C) 5Ω lead


- (D) 20Ω
- 4. The line currents of a star connected load connected to a 3 Phase 4 wire balanced system are $I_R = 42 + j0.55A$, $I_Y = -20.7 j8.8A$, $I_B = -21.3 + j9.70A$. The current flowing from load neutral to source neutral is:
 - (A) $1.45\angle 90^{\circ}$

(B) $84.01\angle -90^{\circ}$

(C) 84.01∠0°

(D) None of the above

5. What is the potential difference between the points N and $n(V_{Nn})$ if $V_P = 415V$?

(A) 830 V

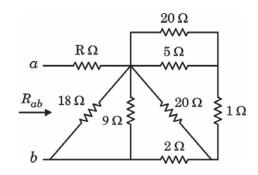
(B) 1245 V

(C) 0V

- (D) 239.6 V
- **6.** An electric stove with four burners and an oven is used in preparing a meal as follows.

Burner 1: 10 minutes, Burner 2: 50 minutes, Burner 3: 25 minutes, Burner 4: 35 minutes and Oven: 30 minutes

If each burner is rated at 1.8 kW and the oven at 1.2 kW, and electricity costs 6 rupees per kWh,

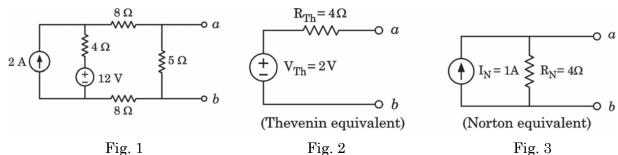

What is the cost of electricity used in preparing the meal?

(A) 25.2 rupees

(B) 22.5 rupees

(C) 52.2 rupees

- (D) 20 rupees
- 7. If R_{ab} is given to be 20Ω , what is the value of R:

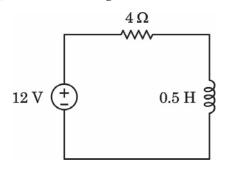

(A) 71Ω

(B) 18Ω

(C) 19Ω

(D) 17Ω

8. The Thevenin and Norton equivalents of circuit in Fig. 1 is given to be Fig. 2 and Fig. 3 respectively:


Which of the statement is correct?

- (A) V_{th} is correct and I_{th} is correct
- (B) V_{th} is correct and I_N is wrong
- (C) R_{th} is correct and R_N is wrong
- (D) V_{th} is wrong and I_{th} is correct
- **9.** The RMS value of the phase to neutral voltage of a 415V, 3Phase, 50 Hz, 4 wire system is:
 - (A) 338.85 V

(B) 293.5 V

(C) 239.6 V

- (D) 415 V
- 10. Assuming ideal elements, Current through the inductor at steady state is:

(A) $2.66 \, \text{A}$

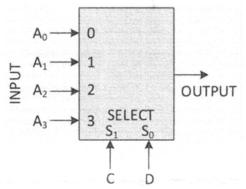
(B) 3.0 A

(C) 27 A

- (D) 24 A
- 11. The reluctance, S of a magnetic circuit with flux, Φ and magneto motive force, F is:
 - (A) $S = F/\Phi$

(B) $S = \Phi / F$

(C) $S = F\Phi$


(D) None of these

12.	The	abilit	y of a material to conduct mag	netic flux thro	ugh it is referred to as :
		(A)	permeance	(B)	reluctance
		(C)	permeability	(D)	none of these
13.	spee		The ratio of magnitude of its		lar orbit of radius r with angular ment with its angular momentum
		(A)	ω and q	(B)	ω,q and m
		(C)	q and m	(D)	ω and m
14.			carrying current has a magne P_m is antiparallel to B. The co		. It is placed in a magnetic field B,
		(A)	in stable equilibrium	(B)	in unstable equilibrium
		(C)	in neutral equilibrium	(D)	none of these
15.			_	-	coil wound on a portion of it. The the main air gap is referred to as:
		(A)	Leakage flux	(B)	Fringing flux
		(C)	Demagnetising flux	(D)	None of these
16.		_	eed in a non-uniform magnetic ow field region. This material		terial tends to move from high field
	(i)	Diar	nagnetic		
	(ii)		magnetic		
	(iii)		omagnetic		
		(A)	(i)	(B)	(ii)
		(C)	(iii)	(D)	(ii) or (iii)
17.	A ma	agneti	c needle is kept in a non-unifo	orm magnetic f	ield. It experiences :
		(A)	a force and a torque	(B)	a force but not a torque
		(C)	a torque but no force	(D)	neither a force nor a torque
18.		_	particle is released from res field which are parallel to each	_	or steady and uniform electric and rticle will move in a :
		(A)	a straight line	(B)	a circle
		(C)	a helix	(D)	a cuboid
148/	2025			6	\mathbf{A}

19.	Whi	ch am	ong the following material have linear	В-Н с	haracteristics?
	(i)	Air			
	(ii)	Vacu	ıum		
	(iii)	Ferr	omagnetic		
	(iv)	Ferr	imagnetic		
		(A)	(i) and (ii)	(B)	(ii) and (iii)
		(C)	(iii) and (iv)	(D)	All the above
20.	A ma	agneti	c saturation is observed by varying Vo	ltage.	Then current will be:
		(A)	constant	(B)	linearly varying
		(C)	drastically varying	(D)	none of the above
21.			current corresponding to maximum efficient an armature resistance of 1Ω and	•	± ' ' '
		(A)	40 A	(B)	30 A
		(C)	50 A	(D)	25 A
22.	The	resist t be a	c shunt motor has full load armature ance of the armature is 0.2Ω . Assuming dded in series with the armature in otorque is :	ng con	stant field flux, the resistance that
		(A)	1Ω	(B)	1.3Ω
		(C)	1.2Ω	(D)	1.4Ω
23.	The	phase	sequence of a three phase alternator i	s reve	rsed if :
		(A)	the field current is reversed keeping t	he dir	rection of rotation same
		(B)	the field current remains same but th	e dire	ction of rotation is reversed
		(C)	the field current is reversed and the n	umbe	er of poles is doubled
		(D)	the number of poles is doubled without	ıt reve	ersing the field current
24.	The from	_	of slip for operation of an induction m	achine	e during plugging in motor mode is
		(A)	0 to 1	(B)	1 to 2
		(C)	-1 to 0	(D)	−2 to −1
1/8/	2025		7		Δ

25.	-	A 3 phase, 500 hp, 440 V, 50 Hz, 6 pole induction motor is running at 950 rpm. The frequency of rotor emf is:				
	(A)	$1.5~\mathrm{Hz}$	(B)	$2.0~\mathrm{Hz}$		
	(C)	$2.5~\mathrm{Hz}$	(D)	50 Hz		
26.		50 V/100 V, single phase transform loaded. The regulation of the transform				
	(A)	5%	(B)	10%		
	(C)	7.5%	(D)	2.5%		
27.		connected transformers, the voltage er is 100 V. Then the voltage rating of				
	(A)	57.7 V	(B)	100 V		
	(C)	50 V	(D)	86.6 V		
28.	An over ex	xcited synchronous motor is called :				
	(A)	Synchronous generator	(B)	Induction generator		
	(C)	Synchronous condenser	(D)	Induction motor		
29.		pole synchronous motor, the develop on the load angle in electrical degree is		luctance torque attains maximum		
	(A)	0	(B)	45°		
	(C)	60°	(D)	90°		
30.	-	r delivered to the rotor of a 3-phasmotor running at 950 rpm is 2500 W.				
	(A)	125 W	(B)	150 W		
	(C)	1250 W	(D)	2375 W		
31.	If $(123)x$ then:	= $(043) y$, where x and y represent	the ba	ases of the corresponding numbers		
	(A)	x = 4 and $y = 6$	(B)	x = 5 and $y = 2$		
	(C)	x = 6 and $y = 10$	(D)	x = 7 and $y = 8$		

32. For the 4×1 multiplexer shown in figure, if the output is to be the AND of inputs at S_1 and S_0 , the values of A_0 , A_1 , A_2 and A_3 are :

- (A) $A_0 = 0$ $A_1 = 0$ $A_2 = 1$ and $A_3 = 0$
- (B) $A_0 = 0$ $A_1 = 1$ $A_2 = 0$ and $A_3 = 0$
- (C) $A_0 = 1A_1 = 0$ $A_2 = 0$ and $A_3 = 0$
- (D) $A_0 = 0$ $A_1 = 0$ $A_2 = 0$ and $A_3 = 1$
- **33.** To build a mod 8 counter, you need to cascade a mod 4 counter with another
 - (A) mod 4 counter

(B) mod 8 counter

(C) mod 2 counter

- (D) mod 3 counter
- **34.** An 8 bit DAC has a full scale voltage range from 0 V to 16 V. If the digital input is 1000 0000, the analog voltage output of the DAC (rounded to one decimal place is) is:
 - (A) 4 V

(B) 6 V

(C) 8 V

- (D) 12 V
- **35.** A decoder is used for addressing a 1024 K × 32 memory. If the decoder is realized using AND gates, then the number of minimum AND gates required to implement the decoder is:
 - (A) 1024

(B) 2²⁰

(C) 32

- (D) 20
- **36.** While executing a nested 'CALL' instruction, the address of the return instruction is stored in :
 - (A) Link register
 - (B) Memory
 - (C) Stack
 - (D) Internal registers

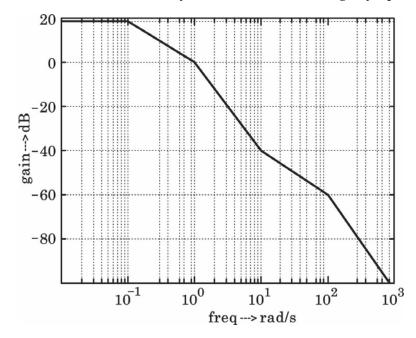
37.	$D = 40_H$, H code PUSH D PUSH B POP H	processor, the register contents are a $E=50_{H},H=60_{H},L=70_{H},\mathrm{SP}=20\mathrm{FA}_{H}$ and the state of the HL pair will be		
	(A)	$H = 20_H, L = 30_H$	(B)	$H = 40_{H}, L = 50_{H}$
	(C)	$H = 50_H, L = 40_H$	(D)	$H = 60_H, L = 70_H$
38.	E = 50 _H , H MVIA 88 _H MVIB 38 _H ADD B			
39.	The numb	per of T states during the execution of l	LDA ir	nstruction in 8085 is :
	(A)	4 T states	(B)	7 T states
	(C)	10 T states	(D)	13 T states
40.	Daisv cha	ining is a :		
	(A)	Bus arbitration technique for process	sing in	terrupts
	(B)	Bus arrangement technique		
	(C)	A chaining technique for interrupt m	asking	5
	(D)	A chaining technique for disabling in	terrup	ts
41.		transmission line, the capacitance ce of each conductor to neutral is:	betwe	een two conductors is 3 μ F. The
	(A)	6 μF	(B)	1.5 μF
	(C)	$3~\mu F$	(D)	$4.2~\mu F$
42.	Shackle in	nsulators are used as strain insulators	for vo	ltages :

(B) < 11 kV

(D) > 400 kV

(A) > 33 kV

(C) > 110 kV

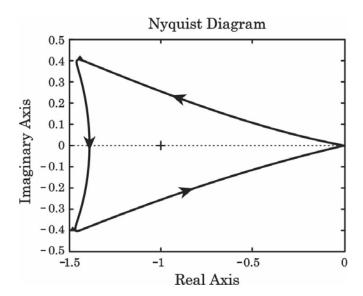

43.		overhead transmission line having a cross string is:	six unit	s in the string of insulators. The
	(A)	66 kV	(B)	11 kV
	(C)	38.1 kV	(D)	114.3 kV
44.		of rise of restriking voltage is station busbar.		when the short circuit occurs near
	(A)	high	(B)	low
	(C)	zero	(D)	none of these
45.	_	nary and secondary of current /star(secondary) transformer is :	trans	former used to protect delta
	(A)	delta, delta	(B)	delta, star
	(C)	star, star	(D)	star, delta
46.	with 5% 1	nsmission line operating at 33 kV coreactance to a generating station bus e reactance of transformer at 1000 kV	sbar 100	00 kVA with 10% reactance. What
	(A)	10%	(B)	20%
	(C)	2.5%	(D)	5%
47.	In a 3 ¢,	4 wire unbalanced system, the magnitude of zero sequen		
	(A)	1/3 rd	(B)	$\sqrt{3}$ times
	(C)	2 times	(D)	3 times
48.	The stead	y state stability of a two machine sys	tem dep	ends on :
	(A)	inertia	(B)	input power
	(C)	per unit reactance of the system	(D)	none of these
49.		ia constant H of a machine of 200 is pu.	MVA is	2 pu. Its value corresponding to
	(A)	4	(B)	0.5
	(C)	1	(D)	0.25
50.	The coron	a effect is reduced when the spacing l	oetween	conductors :
	(A)	increased	(B)	decreased
	(C)	not affected	(D)	none of these

- **51.** For a third order type 1 system which of the following statement is correct?
 - (A) Steady state error for unit step input is not zero
 - (B) Steady state error for unit ramp input is not zero
 - (C) Steady state error for unit parabolic input is zero
 - (D) Steady state error for all standard test signals is zero
- **52.** Identify the number of roots of the equation that are on the imaginary axis : $s^7 + 6s^6 + 11s^5 + 6s^4 + s^3 + 6s^2 + 11s + 6 = 0$
 - (A) 0

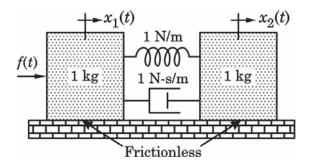
(B) 2

(C) 4

- (D) 6
- **53.** Identify the transfer function of the system with the following asymptotic bode gain plot :


(A) $\frac{100(s+10)}{s(s+1)(s+100)}$

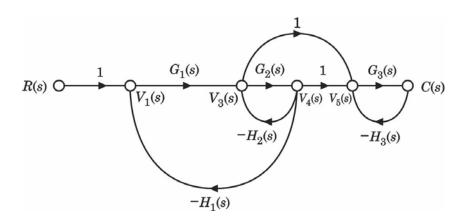
(B) $\frac{(0.1s+1)}{s(s+1)(0.01s+1)}$


(C) $\frac{100(s+10)}{(s+1)(10s+1)(s+100)}$

- (D) $\frac{10(s+10)}{s(s+1)(s+100)}$
- **54.** Cascading the plant in a closed loop system, with a controller having transfer function $C(s) = \frac{(1+0.1s)}{s}$ could cause:
 - (A) increase in the bandwidth of closed loop the system
 - (B) reduction in the bandwidth of closed loop the system
 - (C) changes the transient behaviour
 - (D) changes both transient and steady state behaviour

55. The Nyquist plot shown below represent a stable system in closed loop. Which of the following statement is correct?

- (A) Open loop system has one zero to the right of imaginary axis
- (B) Closed loop system has one zero to the right of imaginary axis
- (C) Open loop system has one pole to the right of imaginary axis
- (D) Open loop system has no poles to the right of imaginary axis
- **56.** Identify the transfer function for the system $\frac{X_1(s)}{F(s)}$:


(A)
$$\frac{s^2 + s + 1}{s^2(s^2 + 2s + 2)}$$

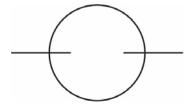
(B)
$$\frac{s+1}{s^2(s^2+2s+2)}$$

(C)
$$\frac{s+1}{(s^2+s+1)(s^2+2s+2)}$$

(D)
$$\frac{s^2 + s + 1}{s(s+1)(s^2 + 2s + 2)}$$

57. Identify the transfer function $\frac{C(s)}{R(s)}$ for the system shown below :

$$({\rm A}) \quad \frac{G_1(s)G_3(s)[1+G_2(s)]}{1+G_2(s)H_2(s)+G_1(s)G_2(s)H_1(s)+G_3(s)H_3(s)}$$


(B)
$$\frac{G_1(s)G_2(s)G_3(s)}{1+G_2(s)H_2(s)+G_1(s)G_2(s)H_1(s)+G_3(s)H_3(s)}$$

(C)
$$\frac{G_1(s)G_2(s)G_3(s)}{\left[1+G_2(s)H_2(s)+G_1(s)G_2(s)H_1(s)\right]\left[1+G_3(s)H_3(s)\right]}$$

$$(D) \quad \frac{G_1(s)G_3(s)[1+G_2(s)]}{\big[1+G_2(s)H_2(s)+G_1(s)G_2(s)H_1(s)\big]\big[1+G_3(s)H_3(s)\big]}$$

- **58.** The closed loop transfer function of a system $\frac{C(s)}{R(s)} = \frac{1}{s^2 + 0.8s + 1}$. Identify the correct statement:
 - (A) Phase difference between input and output for a sinusoidal input of frequency 1 rad/s is 45 degree
 - (B) Settling time is 10s for unit step input
 - (C) Steady state error for unit step input is 0.5
 - (D) The system has a damping ratio of 0.8

59. Identify the possible open loop transfer function of a system whose characteristic equation have the root locus as shown below:

(A)
$$\frac{k(s+1)(s+5)}{(s+2)(s+4)}$$

(B)
$$\frac{k(s+1)(s+4)}{(s+2)(s+5)}$$
(D)
$$\frac{k(s+2)(s+5)}{(s+1)(s+4)}$$

(C)
$$\frac{k(s+4)(s+5)}{(s+1)(s+2)}$$

(D)
$$\frac{k(s+2)(s+5)}{(s+1)(s+4)}$$

- Closed loop transfer function of a unity feedback system is $\frac{2}{s^2+s+4}$. Open loop **60.** system is:
 - (A) Order 2 and type unknown
- (B) Type 2 and Order 2

(C) Type 1 and Order 2

- (D) Type 0 and Order 2
- An SCR with a latching current of 50mA is used to control an inductive RL load. If the load inductance is increased, the minimum duration of the gate pulse necessary to ensure turn on of the SCR:
 - (A) Decreases
 - (B) Increases
 - May increase or decrease depending on the holding current (C)
 - (D) Remains the same
- **62**. The advantage of a half-controlled rectifier over a fully controller rectifier is that:
 - (A) It has better dynamics
 - (B) It avoids discontinuous conduction
 - (C) It has regenerative braking action
 - (D) It has better power factor
- **63.** The forward voltage drop of SCR during on-state:
 - Increases slightly with load current (A)
 - Decreases slightly with load current (B)
 - (C) Varies linearly with load current
 - (D) Remains unchanged

64.		e current through a condinode current will be:	ucting SCR is 10A	. If its gate current is reduced to
	(A)	1.25A	(B)	2.5A
	(C)	5A	(D)	10A
65.		nuous conduction with a fi each pair of thyristor con-		lpha ($lpha$) radian, in single phase full
	(A)	$\pi - \alpha$	(B)	π
	(C)	2π	(D)	$\pi + \alpha$
66.	Forward b	oreak over voltage of a thy	ristor decreases wit	th increase in :
	(A)	Load current	(B)	Anode Current
	(C)	Gate current	(D)	Reverse voltage
67.	200V DC When ope	supply. The motor circuit	has a resistance of ed, the motor deve	a two quadrant chopper fed from a f $0.2~\Omega$ and inductance of 0.2mH . elops a back emf of 100V. What is 0.6
	, ,		` '	
	(C)	0.5	(D)	0.4
68.	Of the for amplifier?	_	low, which is not a	a desirable property of differential
	(A)	High output impedance		
	(B)	High input impedance		
	(C)	High slew rate		
	(D)	High common mode rejec	etion ratio	
69.		hase half-bridge inverter Determine the RMS output		00 V dc source which is feeding an
	(A)	400 V	(B)	360 V
	(C)	200 V	(D)	180V
70.	CMRR of	an OP-AMP should be :		
	(A)	Close to zero	(B)	As large as possible
	(C)	Less than Slew rate	(D)	Close to unity
148/	2025		16	A

71. Specifications of three different ammeters are given in the table below. Which meter has least error?

	Amm	eter	Full scale v	alue	% accurac	cy of full scale
	M	1	20A		1	0.10
	M	2	10A		<u>+</u>	0.20
	\mathbf{M}	3	1A		<u>+</u>	1.00
(A)	M1				(B)	M2
(C)	M3				(D)	All of the above

- **72.** Torque-weight ratio of an instrument indicates:
 - (A) Accuracy
 - (B) Sensitivity
 - (C) Selectivity
 - (D) Fidelity
- **73.** Assertion (A): Permanent magnet moving coil type of indicating instruments are always critically damped.
 - Reason (R) : A critically damped system directly moves to its steady state without oscillation.
 - (A) Both (A) and (R) are true and (R) is the correct explanation of (A)
 - (B) Both (A) and (R) are true and (R) is not the correct explanation of (A)
 - (C) (A) is true but (R) is false
 - (D) (A) is false but (R) is true
- 74. A 100 μ A ammeter has an internal resistance of 100 Ω . For extending the range to measure 500 μ A, the shunt resistance required is:
 - (A) 25Ω
 - (B) 400Ω
 - (C) 600Ω
 - (D) None of the above

75.	A water boiler is switched ON to the ac supply of 230 V at 50 Hz. The frequency of instantaneous power consumed by the boiler is: (A) 0 Hz (B) 25 Hz				
		(A)	0 Hz	(B)	25 Hz
		(C)	50 Hz	(D)	100 Hz
76.	Iden	ntify tl	ne correct statement :		
	(i)		meter is designed to track the demand tricity	l, tim	e and energy consumption of
	(ii)		metering involves dividing the day int periods and low tariff rates at off peak		
		(A)	(i) only		
		(B)	(ii) only		
		(C)	both (i) and (ii) are true		
		(D)	None of the above		
77.			nsumed by a balanced 3-phase, 3-wirelensumed by a balanced 3-phase, 3-wirelensum $\underline{\pi}$		·
		(-)	6	(-)	4
		(C)	$\frac{\pi}{3}$	(D)	$\frac{\pi}{2}$
78.		_	y meter having meter constant of 1s s for a constant load. Then the load is :	200 r	ev/kWh makes 20 revolutions in
		(A)	2 W	(B)	200 W
		(C)	2000 W	(D)	None of the above
79.	In a	n osci	lloscope screen, linear sweep is applied	at the	e:
		(A)	origin		
		(B)	vertical axis		
		(C)	horizontal axis		
		(D)	both horizontal and vertical axis		

n has ten divisions	on the horizon	ontal axis. If a voltage sig	nal
is measured with a ti	me base setting o	of 5 ms/div. the number of cycle	s of
ayed on the screen:			
eycles	(B)	2.5 cycles	
cles	(D)	10 cycles	
)	is measured with a ti ayed on the screen : cycles	is measured with a time base setting ayed on the screen: eycles (B)	eycles (B) 2.5 cycles

81. A unit impulse response of a linear time invariant system is a unit step function u(t). The response of the system to an excitation function $e^{-at}u(t)$, a > 0 for a time t > 0 will be:

(A)
$$\frac{1}{a}(1-e^{-at})$$
 (B) $a(1-e^{-at})$ (C) $1-e^{-at}$ (D) ae^{-at}

82. The condition for a system to be BIBO stable for an impulse response of system $h(n) = a^n u(n)$ is:

- (A) |a| > 1
- (B) |a| < 1
- (C) *a* is real and positive
- (D) a is real and negative

83. Which of the following is true for the system represented by y(n) = x(-n)?

(A) Linear

(B) Time invariant

(C) Causal

(D) Non linear

84. A system characterized by the equation y(t) = ax(t) + b is:

- (A) Linear for any value of b
- (B) Linear if b > 0

(C) Linear if b < 0

(D) Non Linear

85. A LTI system has an impulse response e^{2t} for t > 0. If initial conditions are 0 and input is e^{3t} , the output for t > 0 is:

(A) $e^{2t} - e^{3t}$

(B) $e^{3t} - e^{2t}$

(C) $e^{2t} + e^{3t}$

(D) e^{5t}

- **86.** An aliasing effect is caused in s system when:
 - (A) Sampling frequency equal to the message signal
 - (B) Sampling frequency greater to the message signal
 - (C) Sampling frequency less to the message signal
 - (D) Sampling frequency greater than or equal to the message signal
- **87.** Which of the following statements is correct for a system with gain margin close to unity or a phase margin close to zero?
 - (A) The system is relatively stable
 - (B) The system is highly stable
 - (C) The system is highly oscillators
 - (D) The system is stable
- 88. How many minimum number of samples are required to exactly describe the signal $x(t) = 10\cos(6\pi t) + 4\sin(8\pi t)$?

(A) 4 samples per second

(B) 6 samples per second

(C) 8 samples per second

(D) 2 samples per second

89. The impulse response of a continuous time LTI system is $H(t) = \left(2e^{-2t} - e^{\frac{t-100}{100}}\right)u(t)$.

Then the system is:

- (A) Causal and stable
- (B) Causal but not stable
- (C) Stable but not Causal
- (D) Neither causal nor stable

- **90.** The impulse response of a LTI system is represented as $h(n) = \left(\frac{-1}{4}\right)^n u(n)$, then the step response of the system is:
 - (A) $\frac{1}{5} \left[4 \left(\frac{-1}{5} \right)^n \right]$

(B) $\frac{1}{4} \left[5 + \left(\frac{-1}{5} \right)^n \right]$

(C) $\frac{1}{4} \left[5 - \left(\frac{-1}{4} \right)^n \right]$

- (D) $\frac{1}{5} \left[4 + \left(\frac{-1}{4} \right)^n \right]$
- **91.** The working principle of LVDT is based on:
 - (A) Hall effect
 - (B) Electromagnetic induction
 - (C) Piezoelectric effect
 - (D) Magnetostriction
- **92.** A LVDT has a stroke length of ± 200 mm and provides a sensitivity of 50 mV per millimetre of displacement. If the output voltage of the LVDT is 2.0 V, determine the position of the core from its central (null) position:
 - (A) 10 mm

(B) 20 mm

(C) 40 mm

- (D) 80 mm
- 93. The instrument which is used to measure the specific gravity of battery electrolyte?
 - (A) Hygrometer

(B) Hydrometer

(C) Barometer

- (D) Anemometer
- **94.** Determine the charging current for a 50 Ah battery when charged at a 0.2 C rate:
 - (A) 10 A

(B) 20 A

(C) 40 A

- (D) 80 A
- **95.** A 24 V,60 Ah lead-acid battery is charged at a constant current of 0.1 C. If the battery is fully discharged, estimate how long it will take to fully charge it, assuming the charging efficiency is 80%?
 - (A) 12.5 Hours

(B) 10.0 Hours

(C) 15.0 Hours

(D) 17.5 Hours

The main	objective of earthing in an elec	ctrical installa	tion is:
(A)	To provide a return path for current under normal conditions		
(B)	To increase the voltage level of the system		
(C)	To reduce the power consumption of the system		
(D)	To ensure safety against elec	tric shock	
What is tl	ne minimum required length o	f pipe in a pipe	electrode earthing system?
(A)	5.0 m		
(B)	1.5 m		
(C)	2.0 m		
(D)	2.5 m		
	-		-
(A)	800 W	(B)	5000 W
(C)	2000 W	(D)	3000 W
In plate e	arthing, the copper plate used	should not be l	less than :
(A)	$60~\mathrm{cm} \times 60~\mathrm{cm} \times 3.15~\mathrm{mm}$		
(B)	$90 \text{ cm} \times 90 \text{ cm} \times 6 \text{ mm}$		
(C)	$100 \text{ cm} \times 100 \text{ cm} \times 10 \text{ mm}$		
(D)	$150~\mathrm{cm} \times 150~\mathrm{cm} \times 20~\mathrm{mm}$		
luminous	efficiency of 80 lumens/W an ge illumination in the room :	C	nt of utilization is 0.65. Calculate
(A)	264 lux	(B)	100 lux
(C)	832 lux	(D)	524 lux
	(A) (B) (C) (D) What is the (A) (B) (C) (D) The maxidomestic is (A) (C) In plate each (A) (B) (C) (D) A room of luminous the average (A)	(A) To provide a return path for (B) To increase the voltage level (C) To reduce the power consumption (D) To ensure safety against election (A) 5.0 m (B) 1.5 m (C) 2.0 m (D) 2.5 m The maximum permissible total connidomestic installation, as per standard with (A) 800 W (C) 2000 W In plate earthing, the copper plate used (A) 60 cm × 60 cm × 3.15 mm (B) 90 cm × 90 cm × 6 mm (C) 100 cm × 100 cm × 10 mm (D) 150 cm × 150 cm × 20 mm A room of dimensions 5 m × 5 m is illuminous efficiency of 80 lumens/W and the average illumination in the room: (A) 264 lux	(B) To increase the voltage level of the system (C) To reduce the power consumption of the system (D) To ensure safety against electric shock What is the minimum required length of pipe in a pipe (A) 5.0 m (B) 1.5 m (C) 2.0 m (D) 2.5 m The maximum permissible total connected load for domestic installation, as per standard wiring practices (A) 800 W (B) (C) 2000 W (D) In plate earthing, the copper plate used should not be leaded to the compact of the compact of the copper plate used should not be leaded to the copper pla

SPACE FOR ROUGH WORK

SPACE FOR ROUGH WORK