134/2025

Question Booklet Alpha Code

Question Booklet Serial Number

Total No. of questions: 100 Time: 1 Hour 30 Minutes

Maximum: 100 Marks

INSTRUCTIONS TO CANDIDATES

- 1. The question paper will be given in the form of a Question Booklet. There will be four versions of question booklets with question booklet alpha code viz. A, B, C & D.
- 2. The Question Booklet Alpha Code will be printed on the top left margin of the facing sheet of the question booklet.
- 3. The Question Booklet Alpha Code allotted to you will be noted in your seating position in the Examination Hall.
- 4. If you get a question booklet where the alpha code does not match to the allotted alpha code in the seating position, please draw the attention of the Invigilator IMMEDIATELY.
- 5. The Question Booklet Serial Number is printed on the top right margin of the facing sheet. If your question booklet is un-numbered, please get it replaced by new question booklet with same alpha code.
- 6. The question booklet will be sealed at the middle of the right margin. Candidate should not open the question booklet, until the indication is given to start answering.
- 7. Immediately after the commencement of the examination, the candidate should check that the question booklet supplied to him contains all the 100 questions in serial order. The question booklet does not have unprinted or torn or missing pages and if so he/she should bring it to the notice of the Invigilator and get it replaced by a complete booklet with same alpha code. This is most important.
- 8. A blank sheet of paper is attached to the question booklet. This may be used for rough work.
- 9. Please read carefully all the instructions on the reverse of the Answer Sheet before marking your answers.
- 10. Each question is provided with four choices (A), (B), (C) and (D) having one correct answer. Choose the correct answer and darken the bubble corresponding to the question number using Blue or Black Ball-Point Pen in the OMR Answer Sheet.
- 11. Each correct answer carries 1 mark and for each wrong answer 1/3 mark will be deducted. No negative mark for unattended questions.
- 12. No candidate will be allowed to leave the examination hall till the end of the session and without handing over his/her Answer Sheet to the Invigilator. Candidates should ensure that the Invigilator has verified all the entries in the Register Number Coding Sheet and that the Invigilator has affixed his/her signature in the space provided.
- 13. Strict compliance of instructions is essential. Any malpractice or attempt to commit any kind of malpractice in the Examination will result in the disqualification of the candidate.

134/2025

Time: 1 hour and 30 minutes 1. The ground water contribution to a steam is termed as: (A) Base flow (B) Runoff (C) Infiltration (D) Overland flow 2. Land pan is used to measure: (A) Transpiration (B) Water evaporation (C) Precipitation (D) Humidity 3. The specific retention: Increases with increasing the size (B) Increase with decreasing the size (C) Independent on size (D) Is equal to the specific yield The undulating surface at which pore water pressure is equal to the atmospheric 4. pressure is known as: (A) Ground water (B) Connate water (C) Vadose water (D) Magmatic water **5**. In the petroleum industry the "Darcy" is used as a unit of: (B) Specific yield (A) Hydraulic conductivity (D) Specific retention (C) Intrinsic Permeability 6. The amount of water that can be transmitted horizontally by the full saturated thickness of the aquifer under a hydraulic gradient of "1" is described as: Transmissivity (B) Permeability (A) Hydraulic conductivity (D) Specific yield (C) 7. Fluctuations of water table are caused due to: (A) Evaporation (B) Atmospheric Pressure (C) Tidal effect

(D) All of the above

Maximum: 100 marks

3

8.	water wn	ich is formed at the time of consolidat	ion oi i	nagma is termed as :
	(A)	Meteoric water	(B)	Connate water
	(C)	Juvenile water	(D)	Vadose water
9.	Fine-grain	ned rocks generally have :		
	(A)	High porosity and low permeability		
	(B)	High permeability and low porosity		
	(C)	Low porosity and low permeability		
	(D)	High permeability and high porosity		
10.	A site loca	ation map must include scale, orientat	ion, tit	ele, and :
	(A)	Topographic contours	(B)	Geologic units
	(C)	Geographic reference	(D)	Dip and strike symbol
11.	•	regional structural features and bec egetated area, which technique is most		• • •
	(A)	Side looking airborne radar imagery		
	(B)	LANDSAT false color infrared photo	graphy	7
	(C)	High altitude NASA vertical photogram	aphy	
	(D)	Regional gravity maps		
12.	The order	of decrease in density of clay, sand, sa	andsto	ne and alluvium is :
	(A)	clay, sand, sandstone and alluvium		
	(B)	sandstone, clay, sand and alluvium		
	(C)	sand, clay, sandstone and alluvium		
	(D)	alluvium, sandstone, clay and sand		
13.		h is not a perfect sphere but an obla why the equatorial radius of the Earth	-	· ·
	(A)	The Earth's crust is thicker at the eq	quator	than at the poles
	(B)	Gravitational force is stronger at the	equat	or, pulling the surface outward
	(C)	The Earth's rotation causes centric equator	ifugal	force, which is maximum at the
	(D)	Tidal forces from the Moon pull the	Earth o	outward along the equator

4

 \mathbf{A}

134/2025

- 14. The principle of isostasy is explained differently by Airy and Pratt. Which of the following best represents the distinction between their models?
 - (A) Airy's model assumes variations in crustal thickness at constant density, while Pratt's model assumes variations in crustal density at constant thickness
 - (B) Airy's model assumes variations in both thickness and density, while Pratt's model assumes constant density and thickness
 - (C) Airy's model assumes crustal blocks float at the same depth, while Pratt's model assumes crustal blocks float at different depths
 - (D) Both Airy and Pratt models assume density variations with depth, but Airy neglects thickness variations
- **15.** Which isotope system is most suitable for dating volcanic ash layers a few million years old?
 - (A) Carbon-14
 - (B) Potassium Argon (K Ar)
 - (C) Rubidium Strontium (Rb Sr)
 - (D) Uranium Lead (U Pb)
- **16.** Why has Earth's interior retained its heat over billions of years instead of cooling rapidly like an ordinary solid body of comparable size?
 - (A) Because Earth's oceans regulate the planet's temperature
 - (B) Because long-lived radioactive isotopes within the Earth continue to release heat
 - (C) Because the lithosphere acts as an insulating blanket that blocks heat loss
 - (D) Because gravitational contraction of Earth is still producing heat today
- **17.** At which type of plate boundary are both deep-focus earthquakes and volcanic arcs most likely to be found?
 - (A) Divergent boundary
 - (B) Transform boundary
 - (C) Convergent boundary
 - (D) Conjugate boundary
- 18. The principle of using geomagnetic reversals to date oceanic crust relies on which of the following processes?
 - (A) Radiometric decay of magnetic minerals
 - (B) Continuous drift of continents and magnetic declination
 - (C) Changes in Earth's rotation axis
 - (D) Recording of Earth's magnetic polarity in basalt as it cools

19. Match the following:

Column II Column II

- (a) Benioff Zone (1) Point where three plate boundaries meet
- (b) Triple Junction (2) Zone of deep earthquakes along a subducting plate
- (c) Mid-Ocean Ridge (3) Divergent plate
 boundary under the ocean
- (d) Subduction Zone (4) Occurs at convergent plate boundary
 - (A) a-2, b-1, c-3, d-4
 - (B) a-3, b-2, c-1, d-4
 - (C) a-4, b-3, c-2, d-1
 - (D) a-1, b-4, c-3, d-2
- **20.** Which of the following is the most significant driver of seafloor spreading at mid-ocean ridges?
 - (A) Slab pull from subduction zones
 - (B) Gravitational and tectonic collapse of ocean basins
 - (C) Mantle convection and upwelling of magma
 - (D) Hotspot volcanism and earthquakes
- **21.** The International Gravity Formula accounts for variations in gravity at different latitudes primarily because of:
 - (A) Differences in Earth's crust density and revolution
 - (B) Centrifugal force due to Earth's rotation and Earth's oblateness
 - (C) Changes in Earth's magnetic field and gravity pull
 - (D) Variations in crustal topography and mountains
- 22. Solar flares are sudden eruptions of energy on the Sun's surface. Which of the following is the primary cause of solar flares?
 - (A) Nuclear fission in the Sun's core
 - (B) Solar wind interaction with Earth's magnetosphere
 - (C) Gravitational collapse of the Sun
 - (D) Magnetic reconnection in the Sun's atmosphere

- **23.** The Mariana Trench, the deepest oceanic trench on Earth, is formed at a convergent plate boundary. Which two of the following statements correctly describe its formation?
 - (i) The Pacific Plate subducts beneath the Mariana Plate.
 - (ii) The Mariana Plate overrides the Pacific Plate due to higher density.
 - (iii) The process creates a deep trench and a volcanic island arc.
 - (iv) The trench forms due to crustal stretching at a divergent boundary.

Options:

(A) (i) and (iii)

(B) (i) and (ii)

(C) (iii) and (iv)

(D) (i) and (iv)

- 24. Which of the following statements correctly compare lunar and solar tidal variations?
 - (1) Lunar tides have a larger amplitude than solar tides because the Moon is closer to the Earth despite being less massive.
 - (2) Solar tides have a larger amplitude than lunar tides because the Sun is more massive.
 - (3) Lunar tides have a period of about 12.42 hours, while solar tides have a period of about 24 hours.
 - (4) Solar tides have a stronger influence on tides during spring tides compared to lunar tides.

Options:

(A) (1) and (4)

(B) (2) and (4)

(C) (1) and (3)

(D) (2) and (3)

- **25.** The formation of island arcs is closely associated with which of the following geological processes?
 - (A) Subduction of an oceanic plate beneath another oceanic plate, producing magma that rises to form a curved chain of volcanoes, usually parallel to a deep ocean trench.
 - (B) Crustal extension at a mid-ocean ridge, producing new oceanic crust and series of volcanic islands.
 - (C) Transform fault movement between plates that causes continuous pulses of volcanic activity.
 - (D) Continental collision producing forearc and backarc basins as part of orogeny

134/2025 7

26.	How does the temperature distribution vary between the Earth's crust and mantle?						
	(A)	Both crust and mantle show the depth	same lir	near increase in temperature with			
	(B)	The crust has a steep geothermal adiabatic gradient due to convectio	_	t, while the mantle shows a nearly			
	(C)	The crust is isothermal, while t temperature.	he man	tle shows an exponential rise in			
	(D)	Both crust and mantle are control their gradients are identical.	olled pri	imarily by radioactive heating, so			
27 .	Induced P	Polarization method is generally used	l for	sulphide ore bodies.			
	(A)	Massive	(B)	Disseminated			
	(C)	Liquid	(D)	Small			
28.	investigat	are examples of geophysication; whereas are natu		ods that use active sources for			
	(A)	IP & GPR; Telluric & SP	nai soui	ee memous.			
	(B)						
	(C)	Telluric & SP; GPR & IP					
	(D)	TDEM & Magnetolelluric; IP & SP					
29.		brane IP effect is most pronounced are particularly small.	in the p	presence of in which			
	(A)	Sand	(B)	Silt			
	(C)	Clay	(D)	None of the above			
30.	Mineralis	ation potential can be attributed to _					
	(A)	Electrochemical potential					
	(B)	Electromechanical potential					
	(C)	Combination of both (A) & (B)					
	(D)	Presence of metallic conductors					
31.	Which am	ong the following has the lowest die	lectric co	onstant?			
	(A)	Air	(B)	Dry sand			
	(C)	Fresh water	(D)	Clay			

134/	2025		9		A [P.T.O.]
	(C)	Remains unchanged	(I))	Varies randomly
	(A)	Increases	(H	_	Decreases
38.		omagnetic (EM) sounding, t g frequency.	he depth o	\mathbf{f}	investigation with
	(C)	Induced polarization	(I	<i>(</i> (Electrical resistivity
	` ′		,	_	
57.	(A)	EM prospecting	(H	5)	Magneto telluric
37.	Miso-a-la-	masse system is used in:			
	(D)	Seismic wave velocity			
	(C)	Dielectric permittivity			
	(B)	Electromagnetic conductivity	7		
	(A)	Electrical conductivity			
36.	Which ph Radar (GI		m governs	the	e response of Ground Penetrating
	(C)	GPR	(I))	AFMAG
	(A)	MT	(H	_	VLF
35.		e of the following have greater	_		
	(C)	KH-type	(I))	HQ-type
	(A)	HK-type	(H	3)	HA-type
	$< \rho 3 < \rho 4$	is:			
34.	The appar	rent resistivity sounding curve	e representi	ng	the resistivity structure ρ 1 > ρ 2
	(D)	Solid matrix			
	(C)	Tortuosity of pores			
	(B)	Nature of interstitial fluid			
	(A)	Porosity			
33.	According depend on		lectrical res	ist	ivity of porous sandstone doesn't
	(D)	None of the above			
	(C)	Both lateral and vertical vari	iation		
	(B)	Vertical variation			
	(A)	Lateral variation			

Electrical pseudo-section give an information about ______.

32.

Survey	using electrical method gives the	he Appai	ent Resistivity	because of the
(A)	Electrode spacing	(B)	Depth of measu	urement
(C)	Heterogeneity of ground	(D)	Homogeneity o	f ground
	the following curve is not possible ρ 3 and ρ 4?	e for a 4-l	ayer Earth mod	lel with resistivity
(A)	KQ	(B)	AH	
(C)	QH	(D)	HA	
Spatially	, the global seismic patterns best co	rrelate wi	th:	
(A)	River basins	(B)	Plate boundari	es
(C)	Oceanic trenches	(D)	Abyssal plains	
Liquefact	ion in response to strong ground sh	aking occı	ars mostly in :	
(A)	High grade metamorphic rocks			
(B)	Glaciers			
(C)	Intrusive rocks			
(D)	Loose sediments			
Prime obj	jective of Moment tensors is to learn	ı :		
(A)	Focal length			
(B)	Seismic wave velocity			
(C)	Fault orientation and slip directio	n		
(D)	Tsunami waves			
Seismic a	nisotropy in upper mantle is signific	cantly cor	tributed by the	processes of :
(A)	Magma under plating			
(B)	Slab melting			
(C)	Fluid saturation			
(D)	Lattice preferred orientation of oli	ivine		
Shallow f	ocus earth quakes in Peninsular Inc	dia is mai	nly caused by :	
(A)	Reactivation of ancient faults		-	
(B)	Subduction derived magmatism			
(C)	Mantle convection			
(D)	Hotspot volcanism			

	(A)	Earth's curvature		
	(B)	Low-density mantle		
	(C)	Refraction in outer core		
	(D)	Reflection from the Moho		
47 .	The first i	motion polarity diagram were	used to study:	
	(A)	Epicentral distance		
	(B)	Seismic phase		
	(C)	Wave velocity		
	(D)	Focal mechanism solution		
48.	'Beachbal	l' diagram is a graphic symbol	l that indicates	:
	(A)	Seismogram	(B)	Focal mechanism
	(C)	Phase arrival	(D)	Travel time
49.	The most	destructive earthquake waves	s are :	
	(A)	S	(B)	P
	(C)	PKP	(D)	Rayleigh
50.	Shear mo	dulus is zero in :		
	(A)	Upper Mantle	(B)	Outer core
	(C)	Inner core	(D)	Lower mantle
51 .	The signa	ls from Velocity seismometer	is proportional	to:
	(A)	Ground strain	(B)	Ground acceleration
	(C)	Ground velocity	(D)	Ground force
52.	STS-2 sei	smometer is an example of :		
	(A)	Analog accelerometer		
	(B)	Short-period sensor		
	(C)	Broadband velocity meter		
	(D)	Nuclear array sensor		

 $\textbf{46.} \quad \text{The shadow zone and P-waves is related by:} \\$

134	/2025	1	.2	${f A}$
	(C)	Magnetic saturation	(D)	Zeeman effect
	(A)	Doppler effect	(B)	Proton precession
59 .	Optical Pu	umping magnetometer works on	the principle	e of:
	(0)	rree-air correction	(D)	Douguer correction
	(A) (C)	Drift correction Free-air correction	(B) (D)	Latitude correction Bouguer correction
98.		n compensates for the Earth's sh	_	
58.	Compation	a companyates for the Forth's sh	ano and rota	tion in avoyity approva?
	(C)	969418 mGal	(D)	980482 mGal
	(A)	978032 mGal	(B)	983218 mGal
57.	The absolu	ute value of gravity at the equat	sor:	
	(C)	Gravity gradient	(D)	Magnetic field anomalies
	(A)	Relative gravity	(B)	Absolute gravity only
56.	Lacoste-R	omberg gravimeter generates th	ne data of :	
	(C)	Better temporal resolution	(D)	Operation at higher altitudes
	(A)	Higher sensitivity	(B)	Slower reading rate
	_	n magnetometers is :	(D)	
55.			etometers th	e major disadvantage of proton
	(D)	Global Seismographic Network	x Consortium	
	(C)	International Association of S (IASPEI)	Seismology a	nd Physics of the Earth's Interior
	(B)	American Geophysical Union		
	(A)	US Geological Survey		
54.	The organ	ization mainly responsible for o	peration and	management of WWSSN:
	(D)	Strainmeter-based digital reco	rders	
	(C)	Analog optical drum recorders		
	(B)	Digital accelerometers with GI	PS	
	(A)	Broadband feedback seismome	eters	

 ${\bf 53.} \quad \text{The seismographic recording system, primarily used in WWSSN}:$

60.	In the magnetosphere, the region where the pressure from the solar wind becomes equal to the pressure from the planet's magnetic field is called as:					
	(A)	Magnetopause	(B)	Magnetotail		
	(C)	Magnetosheet	(D)	Bow shock		
61.	Which ge	ological feature would most l	ikely cause a pos	sitive gravity anomaly?		
	(A)	salt dome	(B)	sedimentary basin		
	(C)	groundwater aquifer	(D)	dense igneous intrusion		
62 .	Which de	posit can be explored using g	ravity survey be	tter?		
	(A)	Gold	(B)	Chromite		
	(C)	Bauxite	(D)	Manganese		
63.	Magnetic latitude o		nd independent	of the strike of the body at the		
	(A)	0°	(B)	45°		
	(C)	90°	(D)	all latitudes		
64.	Euler dec	onvolution is a geophysical n	nethod used for :			
	(A)	Upward continuation				
	(B)	Depth estimation of magne	etic sources			
	(C)	Measuring gravitational gradients				
	(D)	Terrain correction				
65 .	The corre	ct order of the geomagnetic t	imescale, from o	ldest to youngest is :		
	(A)	Gilbert, Gauss, Matuyama	, and Brunhes			
	(B)	Gauss, Gilbert, Brunhes ar	nd Matuyama			
	(C)	Brunhes, Matuyama, Gauss and Gilbert				
	(D)	Gauss, Gilbert, Matuyama	and Brunhes			
66.	At magne	tic pole the inclination of tot	al magnetic field	is:		
	(A)	0°	(B)	30°		
	(C)	45°	(D)	90°		

67.	Eotvos corretion is positive for:				
	(A)	Northward motion			
	(B)	Southward motion			
	(C)	Eastward motion			
	(D)	Westward motion			
68.	In a region	n, if the paleo-magnetic inclination	is 45°, wh	at is the paleo-latitude?	
	(A)	26.5°	(B)	45°	
	(C)	54.5°	(D)	62.5°	
69.	Radiomet	ric method is suitable for which type	e of depos	sit?	
	(A)	Radium	(B)	Sulfide ore	
	(C)	Graphite	(D)	Ilmenite	
70.	Standard	unit of gamma radiation is :			
	(A)	Fission			
	(B)	Gamma			
	(C)	Lambda			
	(D)	Roentgen			
71.	Which sta	tement is not correct for radiometri	c surveyi	ng for investigation of :	
	(A)	Nuclear fuel and associated miner	als		
	(B)	Determination of geochronology of	rock forn	nations	
	(C)	Demarcation of geological structure	res and in	trusive	
	(D)	Massive sulfides deposits			
72.	Geiger-Mi	üller counter, responds primarily e source?	to whice	ch particles in the proximity of	
	(A)	Alpha	(B)	Gamma	
	(C)	Beta	(D)	Neutron	
73.	The scinti	llometer is used to measure :			
	(A)	Alpha	(B)	Gamma	
	(C)	Beta	(D)	Neutron	

14.	rne radio	active carbon method is a	simple decay analy	sis based on equation:			
	(A)	$P = P_0 e^{-\lambda t}$	(B)	$P = P_0(1 + e^{-\lambda t})$			
	(C)	$P = P_0(e^{-\lambda t} - 1)$	(D)	$P = P_0(1 + e^{-\lambda t})$ $P = P_0 e^{\lambda t}$			
75 .	Radon is t	the products of the $^{238}\mathrm{U}$ de	ecay series with a h	alf-life of :			
	(A)	3.8 days	(B)	38 days			
	(C)	380 days	(D)	3800 days			
76.	Radiomet	ric method is used as a se	condary geophysica	l method for :			
	(A)	Hydrocarbon exploration	n				
	(B)	Forensic geophysics					
	(C)	Detection of subsurface	cavities				
	(D)	Hydrogeological investig	gations				
77.	The main	objective of a Cement Bo	nd Log is to :				
	(A)	Measure formation poro	sity				
	(B)	Evaluate the quality of o	cement behind casii	ng			
	(C)	Detect natural fractures	3				
	(D)	Record formation resisti	vity				
78.	The inves	tigation depth of the LDT	(Litho Density Too	l) is generally :			
	(A)	A few centimetres into t	he formation				
	(B)	(B) Several tens of meters					
	(C)	Unlimited in clean form	ations				
	(D)	Deeper than resistivity l	logs				
79.	The prima	ary objective of thermal lo	ogging in boreholes	is to :			
	(A)	Measure rock density					
	(B)	Detect fluid movement a	and heat flow patter	rns			
	(C)	Determine porosity direct	ctly				
	(D)	Record natural radioacti	ivity				
80.	Caliper lo	gs are mainly used to mea	asure :				

(A) Measure borehole diameter

(C) Detect natural fractures directly

(B) Measure formation resistivity

(D) Determine formation porosity

	(A)	Neutron and density logs	(B)	Gamma ray logs			
	(C)	Seismic velocity logs	(D)	Core recovery rate			
82.	The dip a	ngle in dipmeter logging is the angle	e betweer	ı:			
	(A)	Bedding plane and horizontal					
	(B)	Bedding plane and borehole axis					
	(C)	Borehole wall and tool pad					
	(D)	Formation resistivity and porosity	curve				
83.	Dipmeter	interpretation is most useful in:					
	(A)	Locating casing collars					
	(B)	Structural and stratigraphic analy	ysis				
	(C)	Measuring cement bond quality					
	(D)	Determining geothermal gradient					
84.	A sudden	drop in gravity values observed in a	a borehole	e may suggest :			
	(A)	Cement channelling					
	(B)	Presence of a low-density formation such as shale or porous sandstone					
	(C)	High-density dolomite					
	(D)	Proper casing placement					
85.	Disseminated sulfide ores are located by using which logging operations:						
	(A)	Induced Polarisation logging	(B)	SP logging			
	(C)	Sonic logging	(D)	Neutron logging			
86.	The log, w	which is used as a detector of mud ca	ake and fo	or measuring mud resistivity:			
	(A)	Latero log	(B)	Micro log			
	(C)	Induction log	(D)	Caliper log			
87.	The microseismogram log is primarily used to indicate the quality of:						
	(A)	Borehole wall rugosity					
	(B)	Cementing behind the casing					
	(C)	Formation porosity					
	(D)	Hydrocarbon saturation					
134	/2025	16			\mathbf{A}		

 $\textbf{81.} \quad \text{Irregular bore hole shape or rugosity can strongly affect}:$

88.	The	gamn	na ray log is particularly usefi	ıl to estimate:	
		(A)	Formation permeability	(B)	Shale volume (Vsh)
		(C)	Hydrocarbon saturation	(D)	Lithostatic pressure
89.	The calle	_	ns of the electromagnetic spec	trum in which	the atmosphere is transparent are
		(A)	Atmospheric Hollows	(B)	Atmospheric Shadows
		(C)	Atmospheric Windows	(D)	Atmospheric Pane
90.	The	widtł	n and number of spectral band	s in which the	image is taken in remote sensing:
		(A)	Spatial Resolution		
		(B)	Spectral Resolution		
		(C)	Radiometric Resolution		
		(D)	Image Resolution		
91.	Whi	ch of	the statements is true in the c	ase of reflectan	ce:
	(i)	Refl	ectance is a measure of electro	omagnetic radia	ation reflected off a surface
	(ii)	Refl	ectance is expressed as a num	ber between 0	and 1.0
	(iii)	Eve	ry object on the Earth's surfac	e has its uniqu	e spectral reflectance
	(iv)	In t	he near Infrared range, the re	flectance of clea	ar water is virtually 1
		(A)	Statements (i), (ii) and (iii) a	re True and (iv) is False
		(B)	Statements (i), (ii) and (iv) a	re True and (iii) is False
		(C)	Statements (i), (ii) and (iv) a	re False and (ii	i) is True
		(D)	Statements (ii), (iii) and (iv)	are True and (i) is False
92.	Whi	ch on	e of the following is <i>not</i> an Ima	aging Sensor Sy	ystem :
		(A)	Multispectral Scanner (MSS)	
		(B)	Infrared Sensing System (IS	S)	
		(C)	Thermal Sensing System (TS	SS)	
		(D)	Microwave Imaging System	(MIS)	
93.	Whi	ch is l	India's latest satellite in the II	RS series, laund	ched in 2025?
		(A)	BHUVAN	(B)	IRS P4
		(C)	NISAR	(D)	NNRMS

94.	The two widely used spatial interpolation methods in Geographic Information Systems include Inverse Distance Weighting (IDW) and :						
	(A)	Charged Coupled Method (CCM)					
	(B)						
	(C)	Geometric Correction Method (GC					
	(D)	Triangulated Irregular Network (T	•				
95.	The $Kayals$ of Kerala are treated under which category of the LULC classification of the National Resource Census of NRSC:						
	(A)	Agricultural lands	(B)	Wastelands			
	(C)	Croplands	(D)	Wetlands			
96.	Which on	e is <i>not</i> a common software used for	Groundw	vater Modelling :			
	(A)	ESPATIAL	(B)	FEFLOW			
	(C)	MODFLOW	(D)	GMS			
97.	The Globa	al Navigation Satellite System (GNS	S) develo	oped by Russia is :			
	(A)	GALILEO	(B)	GPS			
	(C)	GLONASS	(D)	GESPACE			
98.	Which of the following is a structurally controlled drainage pattern that can be identified from an aerial photograph in hilly areas?						
	(A)	Dendritic Pattern	(B)	Radial Pattern			
	(C)	Trellis Pattern	(D)	Braided Pattern			
99.	The world's largest natural structure that can be viewed from space or satellites:						
	(A)	Richat Structure, Sahara	(B)	Great Barrier Reef, Australia			
	(C)	Vredefort Dome, South Africa	(D)	Chicxulub Crater, Mexico			
100.	——————————————————————————————————————						
	surface.						
	(A)	Digital Elevation Model (DEM)	(B)	Digital Imaging Model (DIM)			
	(C)	Digital Terrain Model (DTM)	(D)	Radar Terrain Model (RTM)			

SPACE FOR ROUGH WORK

SPACE FOR ROUGH WORK