KERALA PUBLIC SERVICE COMMISSION SYLLABUS FOR THE POST OF RANGE FOREST OFFICER IN KERALA FOREST & WILDLIFE DEPARTMENT

Optional subject- MECHANICAL ENGINEERING

Engineering Mechanics (10 Marks)

Free-body diagrams and equilibrium; friction and its applications including rolling friction, belt-pulley, brakes, clutches, screw jack, wedge, vehicles, etc.; trusses and frames; virtual work; kinematics and dynamics of rigid bodies in plane motion; impulse and momentum (linear and angular) and energy formulations; Lagrange's equation.

Engineering Materials (15 Marks)

Basic concepts on structure of solids, Crystalline materials, Defects in crystalline materials, Alloys and binary phase diagrams, structure and properties of common engineering materials. Heat treatment of steels. Plastics, Ceramics and composite Materials, common applications of various materials.

Mechanics of Materials (15 Marks)

Stress and strain, elastic constants, Poisson's ratio; Mohr's circle for plane stress and plane strain; thin cylinders; shear force and bending moment diagrams; bending and shear stresses; concept of shear centre; deflection of beams; torsion of circular shafts; Euler's theory of columns; energy methods; thermal stresses; strain gauges and rosettes; testing of materials with universal testing machine; testing of hardness and impact strength.

Theory of Machines (20 Marks)

Types of Kinematics Pair, Mobility, Inversions, Kinematic Analysis, Velocity and Acceleration Analysis of Planar Mechanisms, CAMs with uniform acceleration and retardation, cycloidal motion, oscillating followers; Vibrations –Free and forced vibration of undamped and damped SDOF systems, Transmissibility Ratio, Vibration Isolation, Critical Speed of Shafts. Gears – Geometry of tooth profiles, Law of gearing, Involute profile,

Interference, Helical, Spiral and Worm Gears, Gear Trains- Simple, compound and Epicyclic; Dynamic Analysis – Slider – crank mechanisms, turning moment computations, balancing of Revolving & Reciprocating masses, Gyroscopes –Effect of Gyroscopic couple on automobiles, ships and aircrafts, Governors.

Machine Design (15 Marks)

Design for static and dynamic loading; failure theories; fatigue strength and the S-N diagram; principles of the design of machine elements such as bolted, riveted and welded joints; shafts, gears, rolling and sliding contact bearings, brakes and clutches, springs.

Thermodynamics (10 Marks)

Thermodynamic systems and processes; properties of pure substances, behaviour of ideal and real gases; zeroth and first laws of thermodynamics, calculation of work and heat in various processes; second law of thermodynamics; availability and irreversibility; thermodynamic relations.

IC Engines and Power Plants (15 Marks)

Air-standard Otto, Diesel and dual cycles. Spark Ignition and compression ignition engines, four stroke engine and two stroke engines, mechanical, thermal and volumetric efficiency, Heat balance. Combustion process in S.I. and C.I. engines, pre-ignition detonation in S.I. engine Diesel knock in C.I. engine. Choice of engine fuels, Octane and Cetane ratings.

Power Plant Engineering: Rankine and Brayton cycles with regeneration and reheat, gas turbines. Fuels and their properties, Flue gas analysis, Boilers, steam turbines and other power plant components like condensers, air ejectors, electrostatic precipitators and cooling towers – their theory and design, types and applications.

Fluid Mechanics and Turbomachinery (20 Marks)

Fluid properties; fluid statics, forces on submerged bodies, stability of floating bodies; control-volume analysis of mass, momentum and energy; fluid acceleration; differential equations of continuity and momentum; Bernoulli's equation; dimensional analysis; viscous flow of incompressible fluids, boundary layer, elementary turbulent flow, flow through pipes, head losses in pipes, bends and fittings; basics of compressible fluid flow.

Turbomachinery: Impulse and reaction principles, velocity diagrams, Pelton-wheel, Francis and Kaplan turbines.

Heat-Transfer, Refrigeration and Air Conditioning (20 Marks)

Modes of heat transfer; one dimensional heat conduction, resistance concept and electrical analogy, heat transfer through fins; unsteady heat conduction, lumped parameter system,

Heisler's charts; thermal boundary layer, dimensionless parameters in free and forced convective heat transfer, heat transfer correlations for flow over flat plates and through pipes, effect of turbulence; heat exchanger performance, LMTD and NTU methods; radiative heat transfer, Stefan- Boltzmann law, Wien's displacement law, black and grey surfaces, view factors, radiation network analysis

Refrigeration and air-conditioning: Vapour and gas refrigeration and heat pump cycles; properties of moist air, psychrometric chart, basic psychrometric processes, cooling loading calculations.

Casting, Forming and Joining Processes (10 Marks)

Different types of castings, design of patterns, moulds and cores; solidification and cooling; riser and gating design. Plastic deformation and yield criteria; fundamentals of hot and cold working processes; load estimation for bulk (forging, rolling, extrusion, drawing) and sheet (shearing, deep drawing, bending) metal forming processes; principles of powder metallurgy. Principles of welding, brazing, soldering and adhesive bonding.

Machining and Machine Tool Operations (15 Marks)

Mechanics of machining; basic machine tools; single and multi-point cutting tools, tool geometry and materials, tool life and wear; economics of machining; principles of non-traditional machining processes; principles of work holding, jigs and fixtures; abrasive machining processes; NC/CNC machines and CNC programming.

Metrology and Inspection (10 Marks)

Limits, fits and tolerances; linear and angular measurements; comparators; interferometry; form and finish measurement; alignment and testing methods; tolerance analysis in manufacturing and assembly; concepts of coordinate-measuring machine (CMM).

Manufacturing Management (25 Marks)

Production Planning and Control, Forecasting-Moving average, exponential smoothing, Operations scheduling; assembly line balancing. Product development. Breakeven analysis, Capacity planning. PERT and CPM.

Control Operations: Inventory control-ABC analysis. EOQ model. Materials requirement planning. Job design, Job standards, work measurement, Quality Management-Quality control.

Operations Research: Linear Programming-Graphical and Simplex methods. Transportation and assignment models. Simple queuing models.

Value Engineering: Value analysis, for cost/value. Total quality management and forecasting techniques. Project management.

NOTE: - It may be noted that apart from the topics detailed above, questions from other topics prescribed for the educational qualification of the post may also appear in the question paper. There is no undertaking that all the topics above may be covered in the question paper.