015/2025

1.

Maximum: 100 marks

Which of the following statement/s is/are correct regarding energy shells of an atom?

Time: 1 hour and 30 minutes

	(i)	The	valence shell of a carbon a	tom ha	s 4 electron	s.			
	(ii)	The valence shell of a copper atom has 1 electron.							
	(iii)	The	valence shell of a aluminiu	ım ator	n has 3 elec	etrons.			
		(A)	Only (i) and (ii)		(B)	Only (ii) and (iii)			
		(C)	Only (i)		(D)	(i), (ii) and (iii)			
2.	The	volta	ge (V) can be derived from	the foll	owing equa	tion/s:			
	(i)	V =	EMF – Voltage drop						
	(ii)	V =	$Current \times Resistance$						
	(iii)	V =	Power / (Current \times Power f	actor)					
	(iv)	V =	Current / Resistance						
		(A)	Only (i) and (ii)		(B)	Only (ii) and (iii)			
		(C)	Only (i), (ii) and (iii)		(D)	(i), (ii), (iii) and (iv)			
3.	Mat		e following as per effect of e	electric	current:				
	(1)	Che	mical effect	(i)	Battery ch	arging			
	(2)		ting effect	(ii)	Neon Lam	p			
	(3)	Gas	Ionization effect	(iii)	tungsten f	ilament lamp			
		(A)	(1)–(i), (2)–(ii), (3)–(iii)		(B)	(1)– (i) , (2) – (iii) , (3) – (ii)			
		(C)	(1)–(ii), (2)–(i), (3)–(iii)		(D)	(1)–(iii), (2)–(ii), (3)–(i)			
4.			the following statement/s	s is/are	e correct re	egarding risk of fire duri	ng cable		
			ns and termination?						
	(i)		insulation is cut back too f						
	(ii)		capacity of the plug is inac	dequate)				
	(iii)		connections are too tight		(D)	0.1 (") 1("")			
		(A)	(i), (ii) and (iii)		(B)	Only (ii) and (iii)			
		(C)	Only (i)		(D)	Only (i) and (ii)			
5 .	Whi	ch of	the following statement/s is	s/are co	rrect regar	ding voltage grading of cal	oles?		
	(i)	Low	voltage (L.V): from 0 to 25	0 volts					
	(ii)	Med	lium voltage (M.V): Exceed	ing 250	V but not	exceeding 1500 V			
	(iii)	Higl	h voltage (H.V): Exceeding	1500 V	but not exc	ceeding 33000 V			
		(A)	Only (ii) and (iii)		(B)	(i), (ii) and (iii)			
		(C)	Only (i)		(D)	Only (i) and (ii)			
A				3					
							[P.T.O.]		

6.		Identify the correct statement/s about soldering:							
	(i)	Soldering always involves the use of pressure during the process. The melting point of lead-free solder is typically lower than that of lead-based							
	(ii)	sold		er is typica	my lower than that of lead-based				
	(iii)		x is used to clean the surfaces and	d prevent ox	idation during soldering.				
	(iv)	In s	oldering, components are bonded	using a mol	ten filler metal.				
		(A)	Only (i) and (ii)	(B)	Only (iii) and (iv)				
		(C)	Only (i), (iii) and (iv)	(D)	(i), (ii), (iii) and (iv)				
7 .	Iden	tify t	he correct statement/s about Kiro	ehhoff's Volta	age Law (KVL):				
	(i)	KVI	L states that the sum of currents	entering a j	unction is zero.				
	(ii)		Lapplies to only DC circuits and						
	(iii)		L states that the sum of all voltag L is valid only for circuits contain	_					
	(iv)	(A)	Only (iii)	ing resistors (B)	Only (iii) and (iv)				
		(C)	Only (ii), (iii) and (iv)	(D)	(i), (ii), (iii) and (iv)				
0	T 1	. ,		, ,					
8.	Iden	•	he correct statement about the la						
		(A) (B)	Resistance is directly proportion. Resistance of a conductor increase.	-	•				
		(C)			th, and cross-sectional area of the				
		(-)	conductor.	,	,				
		(D)	Resistance does not change with	h temperatu	ire.				
9.	Iden	tify t	he correct statement/s about the	Wheatstone	Bridge:				
	(i)	The	bridge is balanced when no curre	ent flows thi	rough the galvanometer.				
	(ii)		bridge is balanced when the rat other arm.	io of resistar	nces in one arm equals the ratio in				
	(iii)		Wheatstone Bridge is used to tision.	to measure	unknown resistances with high				
	(iv)	The	Wheatstone Bridge works based	on Kirchhof	f's Voltage and Current Laws.				
		(A)	Only (i), (ii) and (iii)	(B)	Only (ii) and (iii)				
		(C)	Only (ii), (iii) and (iv)	(D)	(i), (ii), (iii) and (iv)				
10.		ct the		e relationsh	ip between voltage, current, and				
	(i)		en resistance increases, the curre	nt increases	if the voltage remains constant.				
	(ii)	Volt	age is equal to the product of cur	rent and res	sistance.				
	(iii)	Cur	rent is inversely proportional to v	voltage at co	nstant resistance.				
	(iv)	Ohn	n's Law shows that current incre	ases with re	sistance at constant voltage				
	(')	(A)	Only (ii)	(B)	Only (i) and (ii)				
		, ,		` ´					
		(C)	Only (ii), (iii) and (iv)	(D)	(i), (ii), (iii) and (iv)				
015	/2025	•	4	:	\mathbf{A}				

11. Select the term, represents the technique used to control the corrosion of by making it as the cathode of an electro chemical cell?				
	(A)	Electroplating	(B)	Cathode Protection(CP)
	(C)	Electro Chemical Equivalent (ECE)	(D)	Ionization
12.	_	to Faraday's First law of electrolyduring Electrolysis is ———	sis, Tl	ne mass of ions liberated at any
	(A)	Proportional to Electro Chemical Equ	uivaler	nt
	(B)	Proportional to the volume of electrol	lyte	
	(C)	Proportional to quantity of electricity	passe	d through the electrolyte
	(D)	Proportional to the density of electrol	lyte	
13.		he approximate value of the Electro igram per coulomb)?	Chem	ical Equivalent (ECE) of silver at
	(A)	0.3043	(B)	3.07
	(C)	2.07	(D)	None of these
14.	Choose th	e rechargeable cell from the following:		
	(A)	Carbon - Zinc cell	(B)	Nickel - Cadmium cell
	(C)	Mercury cell	(D)	Lithium primary cell
15.		pe of positive plate inside the Lead ac and change to Lead peroxide by		· -
	(A)	Faure plate	(B)	Plante plate
	(C)	Foam plate	(D)	Sponge plate
16.		cell is fully charged, it freely gives of e process being known as:	f hydr	ogen at cathode and oxygen at the
	(A)	Airing	(B)	Foaming
	(C)	Cranking	(D)	Gassing
17.	Which of	the following inspection is not done be	fore ch	narging battery?
	(A)	Weight of the electrolyte		
	(B)	Specific gravity of the electrolyte		
	(C)	Voltage of the each cell of the battery	7	
	(D)	Ampere-hour capacity of each cell		
18.	What type 110V etc?	e of charging method is used if the av	ailabl	e supply is high voltage DC 220V,
	(A)	Constant potential method	(B)	Rectifier method
	(C)	Constant current method	(D)	Trickle charging method

19.	WILL OLL	e of the following is not a defect of Lea		_ = = = ; .
	(A)	Hard sulphation	(B)	Buckling of plates
	(C)	Partial short	(D)	Polarization
20.	What is th	ne main difference between Nickel - Ir	on cell	and Nickel – Cadmium cell?
	(A)	Type of negative plates	(B)	Type of positive plates
	(C)	Construction	(D)	Type of separators
21.	Which win	nding of a DC machine (Generator/Mo	tor) cai	rries alternating current only?
	(A)	Interpole winding	(B)	Series Field winding
	(C)	Shunt Field winding	(D)	Armature winding
22.	Among th	e following, which one is not a part of	DC Ge	enerator?
	(A)	Interpole	(B)	Pole shoe
	(C)	End ring	(D)	Armature
23.	Why is the	e armature of the DC Generator made	up of l	laminated high grade steel?
	(A)	To reduce hysteresis loss and eddy co	ırrent	loss
	(B)	To reduce hysteresis loss and fraction	nal los	s
	(C)	To eddy current loss and fractional le	oss	
	(D)	Frictional loss and windage loss		
24.	The perip	hery of the armature divided by the, ie the distance between two		-
	(A)	Back pitch	(B)	Pole pitch
		Dack pitch	(\mathbf{D})	1 of pitch
	` ′	_	(D)	Coil span
	(C)	Front pitch	(D)	Coil span
25.	(C) Among th	_	` /	-
25.	(C) Among th	Front pitch e following, which condition is not r	equir	ed for the build up of voltage in a
25.	(C) Among th DC Gener	Front pitch e following, which condition is not rator (self Excitated)? If excited at load, armature resistance Given the direction of rotation, shunders	equir ce show	ed for the build up of voltage in a
25.	(C) Among th DC Gener (A)	Front pitch e following, which condition is not r ator (self Excitated)? If excited at load, armature resistant Given the direction of rotation, shunto the armature Excited in open circuit its shunt for the state of the shunt for the shund for the s	equir ce show	ed for the build up of voltage in a alld be high coils should be correctly connected
25.	(C) Among th DC Gener (A) (B)	Front pitch e following, which condition is not rator (self Excitated)? If excited at load, armature resistant Given the direction of rotation, shunto the armature	equirece show t field field re	ed for the build up of voltage in a alld be high coils should be correctly connected
25. 26.	(C) Among th DC Gener (A) (B) (C) (D)	Front pitch e following, which condition is not rator (self Excitated)? If excited at load, armature resistant Given the direction of rotation, shunto the armature Excited in open circuit its shunt for critical value	equire ce shou t field field re	ed for the build up of voltage in a ald be high coils should be correctly connected esistance should be less than the
	(C) Among th DC Gener (A) (B) (C) (D) Which typ	e following, which condition is not rator (self Excitated)? If excited at load, armature resistant Given the direction of rotation, shunto the armature Excited in open circuit its shunt for critical value There must be some residual magnet	equire ce shou t field field re	ed for the build up of voltage in a ald be high coils should be correctly connected esistance should be less than the
	(C) Among th DC Gener (A) (B) (C) (D) Which typload?	e following, which condition is not rator (self Excitated)? If excited at load, armature resistant Given the direction of rotation, shunt to the armature Excited in open circuit its shunt for critical value There must be some residual magnetice of DC generator shows rising volume.	equire the second secon	ed for the build up of voltage in a all be high coils should be correctly connected esistance should be less than the haracteristics with an increase in
	(C) Among th DC Gener (A) (B) (C) (D) Which typload? (A) (C)	Front pitch e following, which condition is not relator (self Excitated)? If excited at load, armature resistance Given the direction of rotation, shund to the armature Excited in open circuit its shunt for critical value There must be some residual magnetic of DC generator shows rising volume. DC shunt Generator	equire ce show t field field re tism tage c (B) (D)	ed for the build up of voltage in a alld be high coils should be correctly connected esistance should be less than the haracteristics with an increase in DC Over compound Generator
26.	(C) Among th DC Gener (A) (B) (C) (D) Which typload? (A) (C)	e following, which condition is not rator (self Excitated)? If excited at load, armature resistant Given the direction of rotation, shunt to the armature Excited in open circuit its shunt for critical value There must be some residual magnetoe of DC generator shows rising volume. DC shunt Generator DC series Generator	equire ce show t field field re tism tage c (B) (D)	ed for the build up of voltage in a alld be high coils should be correctly connected esistance should be less than the haracteristics with an increase in DC Over compound Generator

	(D)	DC shunt Motor		
29.	Which typ	oe of DC Motor starter ha	as a protective resist	or?
	(A)	2 – Point starter	(B)	3 – Point starter
	(C)	4 – Point starter	(D)	Rotor Resistance starter
30.	Fleming's	Left hand rule is used:		
	(A)	To determine the direc Motor	tion of rotation of a t	three-phase squirrel cage induction
	(B)	To determine direction	of rotation of DC Mo	otor
	(C)	To determine direction	of rotation of synchi	conous Motor
	(D)	To determine the dire	ection of rotation of	a three-phase slip-ring induction
31.	What is th	ne purpose of the flexible	cords in domestic w	riring?
	(A)	Concealed wiring		
	(B)	Permanent connection		
	(C)	Run cable through hole	es in ceiling	
	(D)	Connection transportal	ole appliances	
32.	How man	y two way switches are r	equired in godown w	viring circuit to control four lamps?
	(A)	2	(B)	3
	(C)	4	(D)	5
33.	Where the	e Iron Clad Double Pole	(ICDP) main switch	is used?
	(A)	Large industrial instal	lations	
	(B)	Control main or branch	n circuits	
	(C)	Single phase domestic	installations	
	(D)	Three phase power circ	euit installations	
34.	What is th	ne maximum permissible	e load for a power su	b circuit as per I.E rules?
	(A)	800 Watt		
	(B)	1500 Watt		
	(C)	2000 Watt		
	(D)	3000 Watt		
35.	What is th	ne reason for supplying A	AC to the electrodes	for measuring earth resistance?
	(A)	Provide electrostatic sh	nield	
	(B)	Protect the coils in the		
	(C)	Reduce the value of cur		
	(D)	Avoid the effect of elect	rolytic emf interfere	ence
A			7	015/2025 [P.T.O.]

Which type of DC motor is used for driving constant speed line shafting?

DC Cummulative compound Motor

(C) DC differential compound Motor

DC series Motor

28.

(A)

(B)

	(A)	Fuse				
	(B)	Ceiling roses				
	(C)	Intermediate switch				
	(D)	Pendent lamp holder				
37.	What is th	ne expansion of ECC?				
	(A)	Earth Conductor Continuity				
	(B)	Earth Continuity Conductor				
	(C)	Earth Carrying Conductor				
	(D)	Earth Continuity Cable				
38.		terial is coated in tungsten electrode	of a flu	orescent tube lai	mp?	
	(A)	Silver oxide				
	(B)	Phosphor powder				
	(C)	Fluorescent powder				
	(D)	Barium and strontium oxide				
39.	What is		sforme	r in high	pressure	sodium
		mp circuit?				
	(A)	Reduce the starting current				
	(B)	Reduce the working voltage				
	(C)	Increase the working voltage				
	(D)	Ignite the high voltage initially				
40.	Which is t	the cold cathode lamp?				
	(A)	Neon sign lamp				
	(B)	Halogen lamp				
	(C)	Fluorescent lamp				
	(D)	Mercury vapour lamp				
41.		given options choose the unit of magn				
		volt/second	, ,	volt second		
	(C)	volt/second ²	(D)	volt ² second		
42.	Magnetic	lines of force coming from a magnet :				
	(A)	intersect at infinity				
	(B)	intersect within the magnet				
	(C)	cannot intersect at all				
	(D)	cancel at pole faces				
43.	The magn	etic material used in permanent mag	net is:			
	(A)	Iron	(B)	Soft steel		
	(C)	Nickel	(D)	Hardened stee	l	

36. Which electrical accessory belongs to general classification of accessories?

44.	Which of motor?	the following rule is used to de	termine the	direction of rotation of an electric
	(A)	Maxwell's cork screw rule		
	(B)	Lenz's law		
	(C)	Fleming's right hand rule		
	(D)	Fleming's left hand rule		
45.	The energ	y stored in the magnetic field of	a solenoid o	f 100 cm long and $\frac{10}{\pi}$ cm diameter
	with 1000	turns of wire carrying a current	of 10 A is:	
	(A)	$0.05\mathrm{J}$	(B)	$0.015 \mathrm{J}$
	(C)	$0.15 \mathrm{~J}$	(D)	$0.5~\mathrm{J}$
46.	Which of	chese cannot store energy?		
	(A)	Capacitor	(B)	Resistor
	(C)	Inductor	(D)	LC Circuit
47.	The perm	eability of a material is 0.997. It	is a ——	— material
	(A)	Diamagnetic	(B)	Paramagnetic
	(C)	Ferromagnetic	(D)	Anti Ferromagnetic
48.	_	se capacitors are connected in		altant capacitance is 4 micro farad. charged to 400 volt d.c. the total 32 J 8 J
49.	_	The magnetic field along a lin		carrying a current I in the same arallel to these wires and midway
	(A)	Depends on I		
	(B)	Is zero		
	(C)	Depends on d		
	(D)	Depends upon the permeability	y of the medi	um between the wires
50 .	The area	of hysteresis loop is a measure o	f :	
	(A)	Permeance	(B)	Magnetic flux
	(C)	Permittivity	(D)	Energy loss per cycle
51.		age value of a sinusoidal alter The maximum value of current is	_	ent in a circuit is found to be 10
	(A)	7.85 A	(B)	15.7 A
	(C)	31.4 A	(D)	62.8 A
A		9)	015/2025 [P.T.O.]

52.	The value	of each resistors in a	delta network, th	at is equivalent to a star net	work
	consisting of three equal resistors of value R ohm is ———— ohm				
	(A)	$\frac{R}{3}$	(B)	$3R^2$	
	(A) (C)	$\frac{R^2}{3}$	(D)	3R	
53.	The flux t	hrough each turn of a	1000 turn coil is	$\left(t^3-2t\right)$ milli Weber, where ' t '	is in
	seconds. F	ind the magnitude of in	duced emf at $t=2$ s	econd:	
	(A)	1 V	(B)	10 V	
	(C)	10000 V	(D)	0.1 V	
54.	the ring flo	ows:	oved away from a n	netallic ring. Th induced curre	nt in
	(A)	Counterclockwise			
	(B)	Clockwise			
	(C) (D)	First clockwise then co First counterclockwise			
	` ,				
55.		he following incandesce	-		
	(A) (C)	100 watt bulb 25 watt bulb	(B) (D)		
	(0)	25 watt buib	(D)	200 watt buib	
56.	The princi	ple of dynamically indu	ced emf is utilized in	n a:	
	(A)	Choke	(B)		
	(C)	Generator	(D)	Thermocouple	
57 .	_	100 W at rated voltage to a lamp of:	e of 200 V, is suppl	lied by a source of 100 V. It wi	ill be
	(A)	100 W	(B)	25 W	
	(C)	200 W	(D)		
58.	For an alte	ernating quantity, the f	form factor is defined	d as:	
	(A)	RMS value Mean value			
	(B)	Mean value RMS value			
	(C)	RMS value Peak value			
	(D)	Peak value			

RMS value

A		-	11		015/2025
	(C)	IC 7812	(D)	LM 340	
	(A)	IC 7905	(B)	LM 317	
66.	Which is	the three terminal, negative vol	tage regulator	r IC?	
	(D)	No depletion region exists			
	(C)	Width of channel has maximu	m value		
	(B)	Drain current becomes zero	_		
	(A)	Reverse bias voltage becomes	zero		
65.		ne effect of pinch-off voltage in a			
	(D)	Voltage across it reached knee	e voitage		
		Voltage across it reached zene			
	(B)	Voltage across it reached zero			
	(A)	After the barrier voltage cance			
64.		s the zener diode begins to cond		verse biased condition?	
	, ,		, ,		
	(C)	Vm	(D)	Vm/π	
	(A)	2 Vm	(B)	Vm/2	
63.	Peak Inve	erse Voltage of each diode in a c	enter-tanned f	full-wave rectifier is	
	(D)	the recombination of holes and	d electrons		
	(C)	usually it is made from Silicon	n material		
	(B)	the intensity of incident light			
	(A)	the reverse biased junction			
62.	The releas	sed light energy in a LED is dep	pends on :		
	(C)	does not change	(D)	all of the above	
	(A)	increases	(B)	decreases	
61.		perature increases, the energy			
	(0)	0 · J ±0.1	(D)		
		6 + j 10.4	` /	10.4 + j6	
		6+j6	(B)	10.4 + j10.4	
60.	Polar forn	n $12 \! < \! 30^\circ$ can be represented in	ı rectangular i	form as:	
	(C)	$50\mathrm{Hz}$	(D)	$100\mathrm{Hz}$	
	(A)	$\frac{2\pi}{360} \mathrm{Hz}$	(B)	$\frac{360}{2\pi} \mathrm{Hz}$	
		360t, where t is time in seconds	_		arrent is:
59.		antanuous value of alternat	C		•

67. Which logic gate has the following truth table?

Input	Output	
A	A B	
0	0	0
0	1	0
1	0	0
1	1	1

(A) OR gate

(B) NAND gate

(C) NOR gate

- (D) AND gate
- **68.** What is the effect, if SCR is latched into conduction and gate pulse is removed?
 - (A) Current through SCR falls to zero
 - (B) Output voltage will be rise up
 - (C) Gate losses control over conduction
 - (D) Immediately rise the output current
- **69.** In a full-wave bridge rectifier, the load current in each of the diode flows for:
 - (A) Complete cycle of the input AC signal
 - (B) Half-cycle of input AC signal
 - (C) More than half cycle of input AC signal
 - (D) Less than half cycle of input AC signal
- **70.** What is the criteria to decide a material as conductor, semi conductor and insulator?
 - (A) Bonding structure of atom
 - (B) Atomic weight of an atom
 - (C) Atomic number of atom
 - (D) Valance electrons exists in an atom
- 71. Which of the following statement is/are correct regarding energy conversion in rotating electrical machines?
 - (i) During energy conversion, out of total input energy some energy is converted into required form, some energy is stored and rest is dissipated.
 - (ii) During energy conversion, out of total input energy some energy is converted into required form, and rest is dissipated.
 - (iii) Reaction of coupling field on the electrical or mechanical system is essential for energy conversion process.
 - (A) Only (i)

(B) Only (i) and (iii)

(C) Only (ii) and (iii)

(D) All of the above (i) (ii) and (iii)

72.		ch of nator	the following stateme:	nt is/are	true ab	out the	armature	winding	of an
	(i)	For a full pitched winding, coil span is 360° electrical.							
	(ii)	Disti	ributed winding diminish	nes armat	ure react	ion and a	armature re	actance.	
	(iii)	Star or delta connection suppress tripplen harmonics across the lines.							
		(A)	Only (ii) and (iii)		(B)	Only ((i) and (iii)		
		(C)	Only (ii)		(D)	All of	the above (i) (ii) and ((iii)
73.			he following test results ingle phase alternator de				_	•	ethod,
	Test	resul	ts						
			current of 200 A is produ OV is produced on open c			•		on of 5 A a	and an
	The	value	of synchronous impedan	ce is:					
		(A)	3Ω		(B)	120Ω			
		(C)	$40~\Omega$		(D)	10Ω			
74.	If the	e exci	tation of an alternator ch	anges du	ring para	llel oper	ation, then	it will affe	ect:
		(A)	power factor and kW ou	tput					
		(B) power factor and kVAr output							
		(C)	power factor, kVAr outp	out and kV	W output				
		(D)	kW output only						
75 .	Find	the o	dd one out :						
		(A)	AC series motor		(B)	Unive	rsal motor		
		(C)	Repulsion motor		(D)	Shade	ed pole moto	r	
76.		_	of the rotor field with a 50 Hz supply having 4	_		or field o	of a 4 pole	induction	motor
		(A)	1500 rpm		(B)	1440 n	rpm		
		(C)	0 rpm		(D)	60 rpr	n		
77.	Whic	ch of t	he following statements	is/are tru	e about to	orque of a	an Inductio	n motor?	
	(i)	Max	imum torque is directly p	proportion	al to squa	are of sta	ator voltage	•	
	(ii)	Max	imum torque is independ	lent of rot	or circuit	resistan	ce.		
	(iii)	The	slip at which maximum t	orque occ	urs is ind	lependen	it of rotor ci	rcuit resis	stance.
		(A)	Only (i)		(B)	Only ((i) and (iii)		
		(C)	Only (i) and (ii)		(D)	All of	the above (i), (ii) and	(iii)

78.	Cho	ose th	e correct statement/s regarding single	phasii	ng of three phase induction motors.
		(A)	The motor continues to run as a sing the load does not exceed 57.7% of the		
		(B)	The motor continues to operate with carrying a rated load as a 3 phase inc		*
		(C)	Both statements (A) and (B) are corre	ect	
		(D)	Only statement (A) is correct		
79.	Whi	ch am	nong the following starting methods is a	not us	ed for a cage type induction motor?
		(A)	Star Delta starting	(B)	Auto transformer starting
		(C)	Stator resistance starting	(D)	Rotor resistance starting
80.		-	the odd one from the following method motor:	nods o	of speed control of a three phase
		(A)	Variation of supply frequency		
		(B)	By injecting an emf in the rotor circuit	it	
		(C)	Variation of applied voltage		
		(D)	By changing the number of stator pol	es	
81.	Cons	sider	the following statements:		
	(i)	The lead	efficiency of a transformer is same a.	t the	same load at 0.8 pf lag and 0.8 pf
	(ii)	Pow	er transformers are designed to have n	naxim	um efficiency at or near full load.
	(iii)	Dist	ribution transformers are designed for	lower	iron losses.
	Iden	tify t	he correct statements from the following	ıg opti	ons:
		(A)	Only (ii) and (iii)	(B)	Only (i) and (iii)
		(C)	Only (i) and (ii)	(D)	All of the above (i), (ii) and (iii)
82.			mum efficiency of a 20 kVA, 2000/200 ratio of full load copper loss to iron loss		nsformer occurs at 80% of full load.
		(A)	$\frac{25}{16}$	(B)	$\frac{16}{25}$
		(C)	$\frac{5}{4}$	(D)	$\frac{4}{5}$
83.	Iden	tify t	he wrong statement/s from the options	given	below:
		(A)	For a given output and voltage rati	-	-
		(B)	In a transformer with concentric wine the core to reduce core loss	dings,	low voltage winding is placed near
		(C)	Both (A) and (B)		
		(D)	None of the above		
0.1.5	1000-	` ,			
015	/2025	,	14		$oldsymbol{\Delta}$

84.	For a Two winding transformer and Auto-transformer having same input, output							
	volta	Itage ratio (k) , the ratio of weight of conductor in two winding transformer to weight of						
conductor in Auto-transformer is								
		(A)	1-k	(B)	k			
		(C)	$\frac{1}{k}$	(D)	$\frac{1}{1-k}$			
85.	The necessary condition for parallel operation of transformers is/are:							
		(A)	Same polarity	(B)	Same $\frac{x}{k}$ ratio			
		(C)	Both (A) and (B)	(D)	None of the above			
86.	6. The ON Load tap changing circuit of a transformer is provided with an impedance :							
		(A)	to minimise the harmonics					
		(B)	for impedance matching					
		(C)	to limit the short circuit current durin	g tap	changing			
		(D)	to maintain same x/r ratio					
87.	Which of the following statements is/are true about instrument transformers?							
	(i)	The burden of an instrument transformer refers to the load connected across the secondary winding.						
	(ii)	The Current Transformer (CT) operates on short circuit condition as the load impedance on the secondary winding is very small.						
	(iii)		Potential Transformer (PT) behaves a sformer operating on short circuit condi		ordinary step down two winding			
		(A)	Only (ii) and (iii)	(B)	Only (i) and (ii)			

(C) Only (i) and (iii)

(D) All of the above (i), (ii) and (iii)

88.	For an ideal transformer the values of permeability and reluctance respectively are :										
		(A)	∞, 0	(B)	0, ∞						
		(C)	0, 0	(D)	∞, ∞						
89.	Which of the following method/s are used to reduce leakage flux in a transformer?										
		(A)	By increasing height of window								
		(B)	By adopting shell type construction								
		(C)	By sandwiching primary and secondary windings								
		(D)	All of the above								
90.		If a 220 V dc supply is given to a 220/440 V. 50 Hz transformer, then the transformer									
	will	will:									
		(A)	induces 440 V dc in seconda:	ry							
		(B)	induces less than 440 V dc in secondary								
		(C)	induces more than 440 V dc in secondary								
		(D)	burn its windings								
91.	In MI instruments, the necessary magnetic field is produced by ampere- turns of current										
	carr	carrying coil. This statement is applicable in :									
	(i)	Attr	raction and Induction type instruments								
	(ii)	Rep	pulsion and Vibrating type Instruments								
	(iii)	Attr	raction and repulsion type instruments								
	(iv)	Dyn	amometer type instruments								
		(A)	Only (i)	(B)	Only (ii)						
		(C)	Only (i) and (iv)	(D)	Only (iii)						
92.	Substation is the assembly of apparatus used to change some Electrical characteristics										
	such as:										
	(i)	Volt	ltage								
	(ii)	AC 1	to DC								
	(iii)	Free	equency								
	(iv)	Acti	tive power								
		(A)	Only (i), (ii) and (iv)	(B)	Only (ii) and (iv)						
		(C)	Only (i), (ii) and (iii)	(D)	Only (iii) and (iv)						

93.	In Moving coil Instruments, deflecting torque (Td) is equal to :									
	(i)	$Force \times Displacement$								
	(ii)	Force \times Perpendicular Distance								
	(iii)	NBI	×Area							
	(iv)	None of the above								
		(A)	only (i)		(B)	only	(ii)			
		(C)	only (iii)		(D)	only	(ii) an	d (iii)		
94.	The scales of Dynamometer type Wattmeter scales are more or less uniform, because :									
	(i)	Deflection is proportional to True power								
	(ii)	Deflection is proportional to active power								
	(iii)	Defle	ection is proportional to p	roduct of Tru	ıe pow	er×in	stanta	neous '	Voltage)
	(iv)	Defle	ection is proportional to a	verage power	r					
		(A)	Only (iv)		(B)	Only	(i) an	d (ii)		
		(C)	Only (i) and (iii)		(D)	Only	(i)			
95.	In u	underground cable system, the properties of Insulating material include :								
	(i)	High Dielectric strength								
	(ii)	High mechanical strength								
	(iii)	Low specific resistance								
	(iv)	Non-inflammable								
		(A)	Only (i), (ii) and (iv)		(B)	Only	(ii)			
		(C)	Only (ii) and (iii)		(D)	Only	(iii) a	nd (iv)		
96.	In si	ngle p	phase watt-hour meter, th	e ring placed	d over	the cer	nter li	mp of s	hunt n	nagnet is
	used	ed for compensating phase errors because:								
	(i)	The exac	flux due to shunt magratly.	iet does not	lag l	behind	the v	oltage	by 90	degrees
	(ii)	The exac	flux due to series magr	et does not	lag l	behind	the o	urrent	by 90	degrees
	(iii)		flux due to shunt and sees exactly.	eries magne	t does	not la	ag beh	ind the	e voltaș	ge by 90
	(iv)	iv) The flux due to shunt magnet does not lead behind the voltage by 90 exactly.							degrees	
		(A)	only (i)		(B)	only	(ii)			
		(C)	only (iii)		(D)	only	(iv)			

97.	In short Transmission lines, the effect of line capacitance is neglecting in calculations because:										
	(i)	Such lines have smaller lengths.									
	(ii)	Such lines transmitting the power at relatively low voltages.									
	(iii)	Such lines have smaller lengths and transmitting the power at relatively low voltages.									
	(iv)	v) Such lines have less reactive power.									
		(A)	only (i)	(B)	only (i) and (ii)						
		(C)	only (iii)	(D)	only (iii) and (iv)						
98.	The	The load curve on the power station is defined as:									
	(i)	Vari	ation of curve with respect to	o max. demand							
	(ii)	Vari	ation of curve with respect to	o time							
	(iii)	Vari	ation of curve with respect to	o average load							
	(iv)	Vari	ation of curve with respect to	o connected load							
		(A)	only (i)	(B)	only (ii)						
		(C)	only (iii)	(D)	only (iv)						
99.	In the designing of electrical transmission line meets:										
	(i)	Economic choice of Transmission voltage									
	(ii)	Economic choice of Transmission power									
	(iii)	Economic choice of supporting structures									
	(iv)	Ecor									
		(A)	Only (i), (ii) and (iii)	(B)	Only (i) and (iv)						
		(C)	Only (ii) and (iii)	(D)	Only (ii) and (iv)						
100.	In Underground system the insulation resistance of a single core cable is :										
	(i)	Directly proportional length									
	(ii)	Inversely proportional to length									
	(iii)	Directly proportional to area									
	(iv)	Inve	ersely proportional to area								
		(A)	Only (i)	(B)	Only (ii)						
		(C)	Only (ii) and (iii)	(D)	Only (ii) and (iv)						

SPACE FOR ROUGH WORK

SPACE FOR ROUGH WORK