009/2024

Maximum : 100 marks

Time : 1 hour and 30 minutes

1. If A is an $m \times n$ matrix then the homogeneous system of linear equation AX = 0 has a non trivial solution if

(A)	m < n	(B)	m > n

- (C) m = n (D) $m \neq n$
- 2. Let T be a linear transformation from V into W. Then T preserve linear independence iff

(A)	T is onto	(B)	T is singular
(C)	T is non singular	(D)	None of these

3. Let V be an n dimensional vector space and W an m dimensional vector space then L(V,W), the set of all linear transformation from V into W is of dimension

(A)	$\frac{m}{n}$	(B)	m + n
(C)	m - n	(D)	mn

4. Let F be a field and T be a linear operator on F^2 defined by $T(x_1, x_2) = (x_1, 0)$. T to then matrix of T relative to the standard ordered basis is

(A)	$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$	(B)	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$
(C)	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	(D)	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$

- 5. If T is a linear operator on a finite dimensional vector space V and let c be a scalar then the operator T-cI is
 - (A) Non singular (B) Singular
 - (C) Invertible (D) None of these

A

3

- 6. Let W be a subspace of an inner product space V and β be an arbitrary vector in V. Then best approximation to β by vectors in W is a vector α in W such that for very vector γ in W
 - (A) $\|\beta \alpha\| \ge \|\beta \gamma\|$ (B) $\|\beta \alpha\| > \|\beta \gamma\|$

(C)
$$\|\beta - \alpha\| \le \|\beta - \gamma\|$$
 (D) $\|\beta - \alpha\| < \|\beta - \gamma\|$

- 7. Let V be an inner product space and S be a set of vectors in V which is orthogonal. Then S is said to be orthonormal set if for very α in S
 - (A) $\|\alpha\| = 1$ (B) $\|\alpha\| > 1$

(C)
$$\|\alpha\| < 1$$
 (D) $\|\alpha\| \neq 1$

8. Using Squeeze theorem the value of the $\lim_{n \to \infty} \left(\frac{\sin n}{n}\right) =$ (A) 0 (B) 1

(C)
$$\infty$$
 (D) None of these

- **9.** If (x_n) be a bounded sequence of real numbers then it has a
 - (A) Convergent Subsequence (B) Divergent Subsequence
 - (C) Divergent Sequence (D) None of these
- **10.** Let *I* be a closed bounded interval and let $f: I \to R$ continuous on *I*. Then *f* is
 - (A) Continuous on I (B) Discontinuous on I
 - (C) Uniformly continuous on I (D) None of these
- 11. Which of the following function on [a,b] is not Reimann integrable.
 - (A) Step function (B) Monotone function
 - (C) Dirichlet function (D) Continuous function
- **12.** If *f* is a real valued function then which of the following is not true for Rolle's theorem
 - (A) f is continuous on (a,b) (B) Differentiable on (a,b)
 - (C) f(a) = f(b) (D) f is continuous on [a,b]

If a > 0 then the improper integral is $\int \frac{1}{x^p} dx$ is 13.

- Convergent if p < 1(A) (B) Convergent if p > 1
- (C) Divergent if p > 1(D) None of these
- 14. If *f* is real valued function then the following is not true for mean value theorem
 - f is continuous on [a,b](A)
 - (B) Differentiable on (a,b)
 - There exit at least one $c \in (a,b)$ such that $f'(c) = \frac{f(b) f(a)}{b a}$ (C)
 - (D) f'(c) = 0
- If the outer measure, $m^*(A) = 0$ then A is 15.
 - Finite (A) (B) Countable
 - (C) Uncountable (D) Can't say
- 16. If E is measurable set and consider the following statements:
 - (i) E is a cantor set
 - E is an $F_{\sigma} \text{ or } G_{\delta} \operatorname{set}$ (ii)
 - E is a Borel set (iii)
 - E is \mathbb{R} , set of real numbers (iv)

Then which of the following is correct

- (A) Only (i) and (iv) are correct (B) Only (i), (ii) and (iv) are correct
- All (i), (ii), (iii) and (iv) are correct (D) (C)
- A sphere of unit radius is centered at the origin. The unit normal at a point (x, y, z) on the 17. surface of the sphere is the vector
 - (B) $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$ (A) (x, y, z)(D) $\left(\frac{x}{\sqrt{2}}, \frac{y}{\sqrt{2}}, \frac{z}{\sqrt{2}}\right)$ (C) $\left(\frac{x}{\sqrt{3}}, \frac{y}{\sqrt{3}}, \frac{z}{\sqrt{3}}\right)$

Α

- Only (iv) is correct

18. If
$$x = r \cos \theta$$
, $y = r \sin \theta$ then $\frac{\partial(x, y)}{\partial(r, \theta)}$ equals
(A) 0 (B) 1
(C) r (D) $\frac{1}{r}$

19. The value of the integral $\int_{0}^{\infty} \sqrt{x} \cdot e^{-x} dx$ is

(A)
$$\sqrt{\pi}$$
 (B) $\frac{\sqrt{\pi}}{2}$
(C) $-\sqrt{\pi}$ (D) $\frac{3}{2}\sqrt{\pi}$

20. The value of $\beta(m, n+1)$ is

(A)
$$\frac{m}{m+n}$$
 (B) $\frac{m}{m+n}\beta(m,n)$
(C) $\frac{n}{m+n}\beta(m,n)$ (D) $\beta(n,m+1)$

21. The value of a_0 for the function $f(x) = \begin{cases} 0, & -\pi \le x < 0 \\ x^2, & 0 \le x \le \pi \end{cases}$ in the Fourier series $f(x) = \frac{a_0}{2} = +\sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$ (A) π^2 (B) $\frac{\pi^2}{3}$ (C) $\frac{\pi^2}{6}$ (D) $\frac{\pi^2}{2}$

22. Let G be a group and $a \in G$ such that $a^{10} = e = a^{25}$ and $a \neq e$ where e is the identify elements of G. Then order of a is

6

- (A) 10 (B) 250
- (C) 1 (D) 5
- **23.** The number of group homomorphism from \mathbb{Z}_{10} to \mathbb{Z}_{20} is
 - (A) 0 (B) 1
 - (C) 5 (D) 10

24.	. Let G be an infinite cyclic group. Then number of generators of G is			
	(A)	1	(B)	Infinite
	(C)	2	(D)	3
25.	Number o	f elements of order 6 is S_6		
	(A)	240	(B)	360
	(C)	120	(D)	720
26.	Let G be a	a group of order 15. Then the number of	f Sylo	w subgroups of G of order 3 is
	(A)	0	(B)	1
	(C)	3	(D)	5
27.	The numb	per of elements of order 5 in the group $\mathbb Z$	$\mathbb{Z}_{15} \times \mathbb{Z}_{2}$	Z5
	(A)	16	(B)	24
	(C)	8	(D)	4
28.	Let G be	a cyclic group of order 24 generated by	a . Th	nen order of a^{10} is
	(A)	24	(B)	18

(C)	12		(D)	6

29. Let $(\mathbb{Z}, \oplus, *)$ be the ring of integers with \oplus and * defined by $a \oplus b = a + b - 1$ and a*b=a+b-ab. Consider the following statements:

- (i) 1 and 0 are additive and multiplicative identities.
- (ii) 2-a and $\frac{a}{a-1}$ are additive and multiplicative inverses of 'a'
- (iii) 1 and *a* are additive and multiplicative identities.
- (iv) 2-a and 0 are additive and multiplicative inverses of 'a'

Then choose the correct option:

- (A) Only (i) is true (B) Only (i) and (ii) are true
- (C) Only (iii) is true (D) Only (iii) and (iv) are true
- 009/2024 [P.T.O.]

30.	$\frac{\mathbb{Z}[i]}{n \mathbb{Z}[i]}$ is	s a field when x is			
	(A)	2	(B)	9	
	(C)	13	(D)	19	
31.	The solut	ion of $3x = 4$ in the field $(\mathbb{Z}_7, +_7, x_7)$ is			
	(A)	0	(B)	2	
	(C)	4	(D)	6	
32.	Consider	the statements:			
	(i) $x^2 -$	3 is irreducible over the field of rationa	l num	bers.	
	(ii) $x^2 -$	5 is irreducible over the field of rationa	l num	bers.	
	(iii) $x^2 -$	7 is reducible over the field irrational n	umbe	ers.	
	Then whi	ch of the following options are correct.			
	(A)	(i) and (ii) are correct	(B)	(i) and (iii) are correct	
	(C)	(i), (ii) and (iii) are correct	(D)	Only (iii) is correct	
33.	Which of	the following cannot be the cardinality	of a fi	eld.	
	(A)	10	(B)	125	
	(C)	8	(D)	27	
34.	If $ED = E$	uclidean domain,			
	PID = Principal Ideal Domain,				
	UFD = Unique Factorization Domain				
	F = Field,	then which of the following is correct.			
	(A)	$\mathrm{PID} \Rightarrow \mathrm{UFD} \Rightarrow \mathrm{ED}$	(B)	$\mathrm{ED} \Rightarrow \mathrm{PID} \Rightarrow \mathrm{UFD}$	
	(C)	$\mathrm{UFD} \Rightarrow \mathrm{PID} \Rightarrow \mathrm{ED}$	(D)	$\text{UFD} \Rightarrow \text{F}$	

8

35. Let R be a ring and C-denotes, a commutative ring with unity, D-denotes a commutative ring with unity and without zero divisors, E-denotes integral domain and F-denotes a field.

Choose the incorrect option:

- (A) If R is C, then R[x] in also C (B) If R is D, then R[x] in also D
- (C) If R is E, then R[x] is also E (D) If R if F, then R[x] is also F
- **36.** Which of the following is a correct statement?
 - (A) Every metric space is a topological space
 - (B) Every topological space is a metric space
 - (C) All topological spaces are pseudo metrisable
 - (D) All of the above
- 37. Which of the following statement is wrong about compactness of a topological space?
 - (A) Compactness in preserved under continuous function
 - (B) Compactness is an absolute property
 - (C) Compactness is hereditary
 - (D) Every infinite subset A of a compact space X has at least one accumulation point in X
- **38.** Strongest topology on the real line R is
 - (A) Usual topology (B) Cofinite topology
 - (C) Semi open interval topology (D) Discrete topology
- **39.** Which of the following is a connected subset of R with usual topology?
 - (A) (1,2) (B) $(0,3) \cup (5,6)$
 - (C) $\{1,2,3\}$ (D) The set N of natural numbers
- **40.** Which of the following is true about a Hausdorff space (X, τ)
 - (A) Limits of sequences are unique
 - (B) Every singleton set $\{x\}$ is closed
 - (C) Every compact subset of X are closed
 - (D) All of the above

41. Let $X = \{1, 2, 3, 4\}, \tau = \{X, \phi, \{1\}, \{2, 3\}, \{1, 2, 3\}, \{4\}, \{1, 4\}, \{2, 3, 4\}\}$ Which of the following is a base for τ ?

(A)
$$B_1 = \{\{1\}, \{2, 3\}\}$$
 (B) $B_2 = \{\{1\}, \{2\}, \{3\}, \{4\}\}$

(C)
$$B_3 = \{\{1\}, \{2, 3\}, \{4\}\}$$
 (D) $B_4 = \{X, \{1\}\}$

42. Choose the correct statement:

- (A) Every surjective map is a quotient map
- (B) Every closed, injective map is a quotient map
- (C) Every bijective map is a quotient map
- (D) Every open bijective map is a quotient map

43. Real part of
$$\frac{1}{1+i}$$
 is
(A) 1 (B) -1
(C) $\frac{1}{2}$ (D) 0

44. Cauchy Riemann equations are given by

(A)
$$u_x = v_x, u_y = v_y$$
 (B) $u_x = v_y, u_y = -v_x$

(C)
$$u_x = -v_y, u_y = v_x$$
 (D) $u_x = v_x, u_y = -v_y$

- **45.** Which of the following functions is harmonic
 - (A) $u = e^x \cos 2y$ (B) $u = x^3 3xy^2$
 - (C) $u = x^3 + 2xy$ (D) $u = x^2 + y^2$

46. Evaluate $\int_{C} \frac{1}{z} dz$ where C is any positively oriented closed contour surrounding the origin.

(A) $2\pi i$ (B) 0 (C) 2π (D) π

47. The transformation $W = \frac{1}{z}$ maps a vertical line x = c onto

(A) Horizontal line(B) Vertical line(C) Circle(D) Ellipse

009/2024

48. Find the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{z^n}{n!}$

(C)
$$\frac{1}{2}$$
 (D) ∞

49. Identify the singularity of $f(z) = \frac{\sin z}{z}$ at z = 0

- (A) Essential Singularity (B) Removable Singularity
- (C) Pole of order 2 (D) Pole of order 1

50. Let X be an inner product space. Then the orthogonal complement of $\{0\}$ is :

(A)
$$X$$
 (B) $\{0\}$
(C) $X \setminus \{0\}$ (D) X^{\perp}

51. Which of the following linear space is infinite dimensional?

(A)
$$R$$
 over Q (B) Q over Q

(C)
$$C$$
 over C (D) C over K

52. If $T: \mathbb{R}^3 \to \mathbb{R}^2$ is the projection operator given by T(x, y, z) = (x, y) then ||T|| is:

(A)
$$\frac{1}{\sqrt{2}}$$
 (B) $\sqrt{2}$
(C) 1 (D) ∞

53. With the usual inner product on R^3 , the vectors x, y, z forms an orthonormal basis. If $x = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right), y = (0, 0, 1)$ then z can choose to be :

(A)
$$(0, 1, 0)$$

(B) $\left(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
(C) $(0, 0, 1)$
(D) $\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0\right)$

- 54. Let T be any operator on a Hilbert space H and α , β are scalars such that $|\alpha| = |\beta|$, then $\alpha T + \beta T^*$ is:
 - (A) Unitary (B) Normal
 - (C) Selfadjoint (D) None of these

Α

55. Let x, y be elements of a Hilbert space H, such that ||x|| = 3, ||y|| = 4 and ||x + y|| = 7, then ||x - y|| equals:

- (C) 3 (D) $\sqrt{2}$
- **56.** A bounded operator $A: H \to H$ where H is a Hilbert space is called self adjoint if and only if:

(A)
$$\langle Ax, y \rangle = 0$$
 (B) $\langle Ax, y \rangle = 1$

(C)
$$\langle Ax, y \rangle = \langle x, Ay \rangle \forall x, y \in H$$
 (D) None of these

57. The order and degree of the differential equation $\frac{dy}{dx} = \left[1 + \left(\frac{d^2y}{dx^2}\right)^2\right]^{\frac{1}{2}}$ is respectively :

58. Integrating factor of the differential equation $(x^2 + 1)\frac{dy}{dx} + 4xy = x$ is :

- (A) $(x^2 + 1)^2$ (B) $x^2 + 1$ (C) $\frac{1}{x^2 + 1}$ (D) $\frac{1}{(x^2 + 1)^2}$
- **59.** Consider the ordinary differential equation y'(x) = f(y(x)). If f is an even function and y is an odd function then :
 - (A) y(-x) is a solution (B) -y(-x) is a solution
 - (C) -y(x) is a solution (D) y(x)y(-x) is a solution

60. The general solution of $\frac{d^2y}{dx^2} - 8\frac{dy}{dx} + 16y = 0$ is :

(A)
$$C_1 e^{4x} + C_2 e^{4x}$$

(B) $C_1 e^{4x} - C_2 e^{4x}$
(C) $(C_1 + C_2 x) e^{4x}$
(D) $(C_1 x + C_2 x^2) e^{4x}$

009/2024

61.	The Wro	onskian of the so	olutions	e^x , e^{-x}	and	e^{2x}	of	the	differential	equation
	$\frac{d^3y}{dx^3} - 2\frac{d^2}{dx}$	$\frac{d^2y}{dx^2} - \frac{dy}{dx} + 2y = 0 :$								
	(A)	$6e^{2x}$			(B)	$-6e^{2}$	2x			
	(C)	$6e^{-2x}$			(D)	$-6e^{-1}$	-2x			
62.	The partia	al differential equatio	n $5\frac{\partial z^2}{\partial x^2} +$	$6\frac{\partial z^2}{\partial y^2} = x$	cy is :					
	(A)	Elliptic			(B)	Para	bolic	;		
	(C)	Hyperbolic			(D)	None	e of t	hese		
63.	Let $u(x,$	$y) = 2f(y)\cos(x-2y),$	$(x, y) \in I$	R^2 be	a sol	ution	of	the	initial value	problem
	$2u_x + u_y =$	$u, u(x, 0) = \cos x$, the	n <i>f</i> (1) equ	ual to :						
	(A)	$\frac{1}{2}$			(B)	e/2				
	(C)	e			(D)	$\frac{3e}{2}$				
64.	$\sigma_{a}(p^{a})$ wh	here p is a prime num	nber is :							
	(A)	1			(B)	a				
	(C)	<i>a</i> +1			(D)	0				
65.	$\phi(55)$ is :									
	(A)	54			(B)	40				
	(C)	55			(D)	51				
66.	If p is pri	me, then for any inte	ger a:							
	(A)	$a^{p-1} \equiv 1 \pmod{p}$			(B)	a^{p-1}	≡ -1	(mod	p)	
	(C)	$a^p \equiv -a \pmod{p}$			(D)	$a^p \equiv$	a(m	$\operatorname{od} p)$		
67.	The soluti	on of $25x \equiv 15 \pmod{29}$	9) is :							
	(A)	$x \equiv 18 \pmod{29}$			(B)	$x \equiv 2$	29(m	od 29)		
	(C)	$x \equiv 18 \pmod{19}$			(D)	$x \equiv 1$	7(mo	od 19)		
68.	The linear	c congruence $ax \equiv b(m)$	mod m) ha	is exactly	y one s	olutio	on if	:		
	(A)	(b, m) = 1			(B)	(a, b))=1			
	(C)	(b, m) = a			(D)	(a, m	(n) = 1			

009/2024 [P.T.O.]

69. $\phi(101^3)$ is :

70.

(A	A)	1021100	(B)	1020100
(0	C)	1021000	(D)	1022000
3^{31} (mod	d 7)) is :		
(A	()	3	(B)	7
(0	C)	31	(D)	17

71. Which of the following is a crucial factor for fostering a positive teacher-student relationship?

- (A) Maintaining a distant and authoritative demeanor
- (B) Ignoring students' personal experiences and backgrounds
- (C) Demonstrating empathy, understanding, and respect
- (D) Minimizing student participation in discussions
- 72. In the context of the flipped classroom model, what is the primary role of in-class time?
 - (A) Traditional lectures
 - (B) Homework assignments
 - (C) Collaborative and interactive activities
 - (D) Standardized testing
- 73. The main objective of teaching is to :
 - (i) Maintain strict classroom discipline
 - (ii) Develop a sense of competition among students
 - (iii) Facilitate learning and promote understanding
 - (A) Only (i) (B) Only (ii)
 - (C) Only (iii) (D) Both (ii) and (iii)
- **74.** What cognitive attribute is associated with the concept of the "zone of proximal development" (ZPD)?
 - (A) Mastery of independent tasks
 - (B) Tasks that are too difficult for the learner
 - (C) Tasks that can be performed with assistance
 - (D) Evaluation of prior knowledge

- **75.** Teacher-student rapport and communication skills are examples of :
 - (i) Internal factors affecting teaching
 - (ii) External factors affecting teaching
 - (iii) Socio-economic factors affecting teaching
 - (A) Only (i) (B) Only (ii)
 - (C) Only (iii) (D) Both (i) and (ii)
- **76.** Applied research is primarily conducted to :
 - (i) Expand theoretical knowledge without practical application
 - (ii) Address specific real-world problems and provide solutions
 - (iii) Ignore the relevance of practical implications
 - (A) Only (i) (B) Only (ii)
 - (C) Only (iii) (D) Both (ii) and (iii)
- 77. The term "Hypothesis" in research refers to :
 - (A) A proven fact
 - (B) A tentative statement that can be tested and verified
 - (C) Ignoring the need for systematic inquiry
 - (D) Final solution of the Research Problem
- 78. What is a key consideration during the data collection phase of research?
 - (A) Minimizing the diversity of data sources
 - (B) Collecting data without a specific plan
 - (C) Ensuring data reliability and validity
 - (D) Relying solely on secondary data
- 79. What distinguishes experimental research from other research methods?
 - (A) Absence of manipulation of variables
 - (B) Focus on qualitative data collection
 - (C) Control over independent variables to establish causation
 - (D) Reliance on naturalistic observations
- 80. Informed consent in research involves :
 - (i) Withholding information from participants to avoid bias
 - (ii) Ensuring that participants are fully aware of the study's purpose, procedures, and risks before agreeing to participate
 - (iii) Ignoring the need for transparency in the research process
 - (A) Only (i) (B) Only (ii)
 - (C) Only (iii) (D) Both (ii) and (iii)
- A

81.	. On which day is 'Samvidhan Divas' celebrated in our country?			
	(A)	January 26	(B)	November 26
	(C)	August 26	(D)	October 26
82.	An interp	retation of the Constitution of India is b	ased	on the spirit of :
	(A)	Preamble	(B)	Directive Principles
	(C)	Fundamental Rights	(D)	Fundamental Duties
83.	Fundame	ntal Rights can be suspended during :		
	(A)	National Emergency		
	(B)	Financial Emergency		
	(C)	Both National and Financial Emergen	cy	
	(D)	None of the above		
84.	To uphold in :	and protect the sovereignty, unity and	l Inte	grity of India is a provision mentioned
	(A)	Article 51	(B)	Article 51A
	(C)	Article 37	(D)	Article 32
85.	Right to p	rivacy as a fundamental right is implied	d in :	
	(A)	Article 22	(B)	Article 17
	(C)	Article 21	(D)	Article 50
86.	Who calle	d the preamble to Indian Constitution a	ıs 'Soı	al of the Constitution'?
	(A)	Dr. B.R. Ambedkar	(B)	Pandit Jawaharlal Nehru
	(C)	Pandit Thakur Das Bhargava	(D)	Dr. Rajendra Prasad
87.	Which is k	xnown as the 'Mini Constitution'?		
	(A)	42 nd Amendment	(B)	44 th Amendment
	(C)	52 nd Amendment	(D)	73 rd Amendment
88.	Which of Dr. B.R. A	the rights was considered the 'Hear mbedkar?	t and	Soul' of the Indian Constitution by
	(A)	Right to Freedom of speech	(B)	Right to Equality
	(C)	Right to Freedom of Religion	(D)	Right to Constitutional Remedies
89.	Which of t to establis	the following Articles of the Constitution of and run educational institutions of th	n of Ir neir ov	ndia safeguards the rights of minorities wn liking?
	(A)	Article 19	(B)	Article 30
	(C)	Article 34	(D)	Article 33

90.	Right to	property	is a	:
-----	----------	----------	------	---

- (A) Fundamental Right
- (B) Constitutional Right
- (C) Both Fundamental and Constitutional Right
- (D) Neither Fundamental nor Constitutional Right
- 91. Which organisation released the impact of disaster on agriculture and food security?

(A)	NABARD	(B)	NITI AAYOG
(C)	FAO	(D)	UNEP

92. In which year the Kerala state literacy mission authority was set up?

(A)	1997	(B)	1998
(C)	1999	(D)	1996

93. Who was the first Non-Brahmin to ring the temple bell of the famous Guruvayoor temple?

(A)	P. Krishna Pillai	(B)	A.K. Gopalan
(C)	K. Kelappan	(D)	Sree Narayana Guru

94. In which year Kerala Infrastructure Investment Fund Board (KIIFB) was established?

(A)	11.11.1998	(B)	10.10.1999
(C)	11.11.1999	(D)	9.9.1999

- 95. Which of the following statement is/are correct about Malayali Memorial?
 - (i) The Malayali Memorial was a petition given in 1891 during the time of Srimoolam Thirunal Maharaja
 - (ii) Barrister G.P. Pillai was the leader of Malayali Memorial
 - (iii) K.P. Shankara Menon first signed the Malayali Memorial
 - (iv) In Travancore, Political agitation started in 1891 with Malayali Memorial
 - (A) Only (i) and (ii) (B) Only (ii)
 - (C) Only (i), (ii) and (iii) (D) All the above

96. Which of the following statement is/are wrong about Anna Chandy?

- (i) First woman Judge of India
- (ii) She was born in 1905
- (iii) Jeevitha katha is the autobiography of Anna Chandy
- (iv) She founded and edited the journal 'Shreemati'
 - (A) Only (i) (B) Only (ii)
 - (C) Only (iii) (D) Only (iv)
- **97.** Who is the author of the book Athmavilasam?
 - (A) Sree Narayana Guru (B) K.P. Keshava Menon
 - (C) Ayya Vaikunda (D) Chattampi Swamikal
- **98.** Which of the following statement is/are wrong?
 - (i) The Nair Service society was founded in 1916
 - (ii) The Temple entry proclamation was signed by Sri. Chithira Thirunal on the eve of his 24th birthday
 - (iii) A. G. Velayudhan was killed in a police lathi charge during Paliyam Sathyagraha
 - (iv) In 1928 Sahodaran Ayyappan became the editor of the Magazine Yukthivadi
 - (A) Only (i), (ii) and (iii)
 (B) Only (iii) and (iv)
 (C) Only (i)
 (D) Only (i) and (ii)
- 99. Who organised Savarnajatha during Vaikkom Sathyagraha?
 - (A) Mannath Padamanabhan (B) T. K. Madhavan
 - (C) K. Kelappan (D) A.K. Gopalan

100. Who is appointed as Managing Director of State Bank of India

- (A) Maneesh Kapoor (B) Sandip Garg
- (C) Vinay Tonse (D) Navneet Munof

SPACE FOR ROUGH WORK

SPACE FOR ROUGH WORK