Question 21/2023/OL
Paper Code:
Category 255/2022
Code:
Exam: Statistician
Date of Test 12-04-2023
Department KIRTADS
Question1:-If f is convex and $E X$ is finite, then $f(E X) \leq E f(X)$ is known as
A:-Liapounov's inequality
B:-Schwarz inequality
C:-Jensen's inequality
D:-Cauchy inequality
Correct Answer:- Option-C
Question2:-If X and Y are uniformly distributed on $(0,1)$, then $E(|X-Y|)$ is
$A:-\geq \frac{1}{2}$
B:- $\leq \frac{1}{2}$
C:- ≥ 1
D:- ≤ 0
Correct Answer:-Question Cancelled
Question3:-Let X be a random variable with characteristic function given by $\Phi(u)$, then the value of $\operatorname{Var}(\operatorname{Sin} x)+\operatorname{Var}(\operatorname{Cos} x)=$

A:-1 - | $\Phi_{(0))^{2}}$
B:-|1 $-\Phi_{(0)^{2} \mid}$
C:-1 $-\mid \Phi_{\left.(1)\right|^{2}}$
D:-|1 - $\Phi_{(1)^{2} \mid}$
Correct Answer:- Option-C
Question4:-If probability of hitting a target is 0.5 , what is the probability of hitting the target on $6^{\text {th }}$ attempt

A:-0. 5
B:-(0.5) ${ }^{6}$
C:-0.25
D:-(0.5) ${ }^{5}$
Correct Answer:- Option-B
Question5:-Buses travel on every half hours in day times in a remote area. What is the probability that a man reaching bus stop in day time will have to wait for 20 minutes ?

A:-0.5
B:-0.25
C:-0.167
D:-0.33
Correct Answer:- Option-D
Question6:-What is the probability of success in an event with both mean and variance are found 4, assuming binomial distribution ?

A:-0
B:-1
C:-0 $<$ p <1
D:-0.5
Correct Answer:-Question Cancelled
Question7:-The points of inflexion of a normal curve are
A: $-\mu \pm \sigma$
B: $-\mu \pm 2 \sigma$
C: $-\mu \pm 3 \sigma$
D: $-\mu \pm 0.5$
Correct Answer:- Option-A
Question8:-The characteristic function for Cauchy distribution is
A: $-e^{-\frac{t^{2}}{2}}$
B:-e $-|t|$
C: $-\frac{1}{1+t^{2}}$
D: $-\frac{1}{\pi\left(1+t^{2}\right)}$
Correct Answer:- Option-B
Question9:- $x_{i}=1$, if the $i^{\text {th }}$ outcome is a success with p (success) $=\mathrm{p}$ $x_{i}=0$, if the $i^{\text {th }}$ outcome is a failure with p (failure) $=\mathrm{q}$.
Then the distribution of random variables $s_{n}=\sum x_{i}$ where x_{i} are independent is
\qquad as n tends to infinity.
A:-Uniform
B:-Binomial
C:-Asymptotically normal
D:-Exponential
Correct Answer:- Option-C
Question10:-A fair die is thrown 600 times find the lower bound for probability of getting the number of sixes in between 80 and 120 assuming binomial distribution.

A:-0.5
B:-0.167

C:-5/6
D:-19/24
Correct Answer:- Option-D
Question11:-If an unbiased estimator and a sufficient statistic exist for T , then the minimum variance estimator for T is always a function of

A:-Unbiased estimator
B:-Sufficient Statistic
C:-Sum of both
D:-Difference of both
Correct Answer:- Option-B
Question12:-If $x_{1}, x_{2}, \ldots, x_{n}$ are independent observations from a normal population such that $\mathrm{E}_{\left(x_{i}\right)}=\mu$ and $\mathrm{V}\left(x_{i}\right)=\sigma^{2}$, for $\mathrm{I}=1,2, \ldots$, n . Then \qquad is a least square estimate of σ^{2}.

A:- $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$
B:- $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)$
C:- $\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$
D:- $\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$
Correct Answer:- Option-D
Question13:-If T_{n} is a sequence of estimates such that $\mathrm{E}\left(T_{n}\right) \rightarrow \theta$ and $\operatorname{Var}\left(T_{n}\right) \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$, then T_{n} is

A:-a constant
B:-1
C:-a function of θ
D:-0
Correct Answer:-Question Cancelled
Question14:-An estimator is said to be sufficient statistic for a parametric function $T(\theta)$ if it contain all the information that is in the

A:-Unbiased estimator
B:-Sample
C:-Population
D:-Universe
Correct Answer:- Option-B
Question15:- \qquad do not always exist.
A:-Unbiased estimator

B:-Sufficient Statistic
C:-Consistent estimator
D:-Efficient estimator
Correct Answer:- Option-A
Question16:-The graphical shape of t-distribution is based on
A:-sample size
B:-degrees of freedom
C:-population size
D:-error
Correct Answer:- Option-B
Question17:-The MLE of a parameter α of a population having density $\alpha-x$), $0<x$ $<\alpha$ is

A: $-2 x$
B:-x
C: $-2 / x$
D:-x/2
Correct Answer:-Question Cancelled
Question18:-The method of moments were first invented by
A:-Neyman
B:-Karl Pearson
C:-Tchebyschev
D:-Fisher
Correct Answer:- Option-B
Question19:-Difference between expected value of an estimator and the corresponding parameter is

A:-mean deviation
B:-MAPE
C:-MAE
D:-bias
Correct Answer:- Option-D
Question20:-The consistency of estimators is identified by comparing
A:-Variance
B:-Mean
C:-Standard error
D:-Median

Question21:-To test the hypothesis involving proportions, both $n p$ and nq should be
A:-greater than 5
B:-between 0 to 1
C:-less than 1
D:-greater than 50
Correct Answer:- Option-A
Question22:-Power of the test is the probability of
A:-acceptance
B:-correct decision
C:-minimum error
D:-maximum error
Correct Answer:- Option-B
Question23:-A critical region which is most powerful when a hypothesis is tested against a series of alternatives is called

A:-Neymann CR
B:-BCR
C:-UMPCR
D:-Acceptance Region
Correct Answer:- Option-C
Question24:-Neyman-Pearson Lemma is used to find \qquad for testing simple H_{0} against a simple H_{1}.

A:-Error
B:-Best Critical region
C:-Power
D:-Significance level
Correct Answer:- Option-B
Question25:-Degrees of freedom for a chi square test of independence with contingency table of order $\mathrm{m} \times \mathrm{n}$ is

A:-mn - 1
B:-n(m-1)
C:-m(n-1)
D:-(m-1)(n-1)
Correct Answer:- Option-D
Question26:-Kruskal Wallis test is a nonparametric analogue of
A:-t-test
B:-Z-test
C:-One-way ANOVA

D:-Two-way ANOVA
Correct Answer:- Option-C
Question27:-As the value of Chi-square near to zero in testing goodness of fit, we say that

A:-independent
B:-dependent
C:-good fit
D:-bad fit
Correct Answer:- Option-C
Question28:-Statistical hypothesis under test are called
A:-Rejection space
B:-Alternate hypothesis
C:-Composite hypothesis
D:-Null hypothesis
Correct Answer:- Option-D
Question29:-Which of the following is not a non parametric test ?
A:-F
B:-Kolmogrov-Smirnov
C:-Run's test
D:-Mann Whiteney U test
Correct Answer:- Option-A
Question30:-A statistical test to determine whether there is non random association two categorical variables is

A:-Sign test
B:-Fisher's exact test
C:-Wilcoxon Signed Rank Test
D:-Friedman ANOVA
Correct Answer:- Option-B
Question31:-In an RCBD with 5 treatments each replicated in 4 blocks, the d.f. for error is

A:-16
B:-15
C:-12
D:-19
Correct Answer:- Option-C
Question32:-Analysing a CRD, if the F value in ANOVA Table is less than one, what is shows

A:-Design is wrong
B:-Some of the means are significantly different
C:-All the treatments are significantly different
D:-Analysis is wrong as higher value should be in the numerator in calculating F

Correct Answer:- Option-A
Question33:-If we want to identify the best nutritious food for weigh gain in chicken after trying three such foods and measured weekly for one year, which analysis you prefer ?

A:-ANOVA
B:-MANOVA
C:-Repeated Measures ANOVA
D:-t
Correct Answer:- Option-C
Question34:-Replication is used in Design of Experiments to
A:-Make observation independent
B:-Make treatments independent
C:-To convince scientific world
D:-To estimate the error
Correct Answer:- Option-D
Question35:-In a uniformity trial to estimate the fertility gradient of an experimental material which method is suitable ?

A:-Pearson's Correlation
B:-Simple random sampling
C:-Fairfield Smith's Variance law
D:-Minimum curvature method by Fisher
Correct Answer:- Option-C
Question36:-When standard deviation is proportional to mean, the transformation used before doing ANOVA is

A:-Square root
B:-Arc Sine
C:-Logarithmic
D:-Inverse
Correct Answer:- Option-C
Question37:-The method used to split the factorial experiment in to two in the case of large number of treatments is

A:-Defining contrast
B:-Split plot design

C:-Strip plot design
D:-Galois group blocking
Correct Answer:- Option-A
Question38:-A symmetric BIBD exists for even value of v, where v is the number of treatments, r the number of replications and λ is the no. of pairs, only if $r-\lambda$ is a

A:-prime number
B:-a perfect square
C:-a perfect cube
D:-even number
Correct Answer:- Option-B
Question39:-In a resolvable BIBD with number of treatments v, number of replications r, the number of blocks b should be

A:-v $+r-1$
B:-<v+r-1
$C:-\geq v+r-1$
D:-v
Correct Answer:- Option-C
Question40:-In a breeding trial with large number of lines, where RBD or BIBD can't be considered

A:-Lattice Design
B:-Augmented Design
C:-Response surface design
D:-LSD
Correct Answer:- Option-A
Question41:-In the case of study of estimation of milk production from cows in Kerala, which type of sampling design is better with limited resources and time ?

A:-Time series data collection
B:-Simple Random Sampling
C:-Cluster Sampling
D:-Stratified Random Sampling with breed
Correct Answer:-Question Cancelled
Question42:-Unit of sample selected is known as
A:-Sampling unit
B:-Sample unit
C:-Population
D:-Standard error
Correct Answer:- Option-B

Question43:-Proximity to the value obtained by the repeated application of the sampling procedure is

A:-accuracy
B:-partition
C:-standard error
D:-precision
Correct Answer:- Option-D
Question44:-Ratio estimator is more efficient when
A:- $\rho>\frac{1 c_{x}}{2 c_{y}}$
B:- $\rho<\frac{1 c_{x}}{2 c_{y}}$
C: $-\rho>\frac{2 c_{x}}{c_{y}}$
D:- $\rho<\frac{2 c_{x}}{c_{y}}$
Correct Answer:- Option-A
Question45:-If there is perfect correlation with y and x so that $y-a+b x$, then in SRS the estimator $N \dddot{y}$ will be superior to ratio estimator $X \hat{R}$ if

A:- $\frac{\ddot{x}^{2} v\left(\frac{1}{\hat{x}^{3}}\right)}{s_{x}^{2}}=\frac{1-f}{n}$
$\mathrm{B}:-\frac{\ddot{x}^{2} v\left(\frac{1}{\hat{x}^{3}}\right)}{s_{x}^{2}}=\frac{b^{2}}{a^{2}} \frac{1-f}{n}$
C:- $\frac{\ddot{x}^{2} v\left(\frac{1}{\hat{x}^{3}}\right)}{s_{x}^{2}}<\frac{b^{2}}{a^{2}} \frac{1-f}{n}$
D:- $\frac{\ddot{x}^{2} v\left(\frac{1}{\hat{x}^{3}}\right)}{s_{x}^{2}}>\frac{b^{2}}{a^{2}} \frac{1-f}{n}$
Correct Answer:- Option-D
Question46:-Intra cluster correlation coefficient ρ is calculated using the formula
A:- $\frac{1}{M-1} \frac{\sigma_{b}^{2}-\sigma_{w}^{2}}{\sigma^{2}}$
B:- $\frac{1}{M} \frac{\sigma_{b}^{2}-\sigma_{w}^{2}}{\sigma^{2}}$
C:- $-\frac{1}{M-1} \frac{\sigma_{b}^{2}-\sigma^{2}}{\sigma_{w}^{2}}$
D:- $\frac{1}{M} \frac{\sigma_{b}^{2}-\sigma^{2}}{\sigma_{w}^{2}}$
Correct Answer:- Option-A
Question47:-If c' denote the cost of collecting information on x and c for the cost of collecting information on y, double sampling is better than direct sampling for y in
the case of regression estimation, then the condition for same cost is
A:- $\rho^{2}<\frac{4 c c^{\prime}}{\left(c+c^{\prime}\right)^{2}}$
B:- $\rho^{2}>\frac{4 c c^{\prime}}{\left(c+c^{\prime}\right)^{2}}$
C:- $\rho^{2}>\frac{4 c c^{\prime}}{\left(c-c^{\prime}\right)^{2}}$
D:- $\rho^{2}<\frac{4 c c^{\prime}}{\left(c-c^{\prime}\right)^{2}}$
Correct Answer:- Option-B
Question48:-In SRSWOR sample mean square is an unbiased estimate of population
A:-Variance
B:-Mean square
C:-Mean
D:-Standard error
Correct Answer:- Option-B
Question49:-Sampling Variance \qquad due to post stratification.
A:-increases
B:-remains same
C:-decreases
D:-halves
Correct Answer:- Option-A
Question50:-In medical practices, there are some diseases which are yet to be under research, person having such diseases can be identified be some references.
Such type of sampling is known as
A:-Gibbs Sampling
B:-Convenience Sampling
C:-Judgement Sampling
D:-Snowball Sampling
Correct Answer:- Option-D
Question51:-Let X be a random variable with pdf $f(X)=k x^{3} e^{-2 x} X>0$. The value of K is

A:- $\frac{1}{2}$
B: $-\frac{8}{3}$
C:- $-\frac{1}{4}$
D:- $-\frac{16}{3}$
Correct Answer:- Option-B
Question52:-Let X and Y be two independent geometric random variables. The
conditional distribution of $X \mid X+Y$ is
A:-Uniform
B:-Geometric
C:-Binomial
D:-Hyper Geometric
Correct Answer:- Option-A
Question53:-Consider a random experiment with two possible outcomes success and failure. Experiment is repeating n times independently. Let X denote the no. of success with constant probability p . Distribution of the no. of failure is

A:-Poisson
B:-Multinomial
C:-Geometric
D:-Binomial
Correct Answer:- Option-D
Question54:-Which of the following statements is/are correct about Cauchy distribution?
i. For a Cauchy random variable, central moments exist
ii. For a Cauchy random variable, mean does not exist
iii. For a Cauchy random variable, characteristic function exists

A:-All of the above (i , i and iii)
B:-Only (i and ii)
C:-Only (ii and iii)
D:-Only (i and iii)
Correct Answer:- Option-C
Question55:-Let X and Y are two independent exponential random variables with parameters 2 and 3 . Which of the following is correct?

A:-X + Y ~ exponential (5)
B:-X + Y~Gamma (5, 2)
C:-Min(X, Y) ~ exponential (5)
D:-Max(X,Y) ~ Exponential (5)
Correct Answer:- Option-C
Question56:-Let $x_{1}, x_{2} \ldots x_{n}$ be a set of n independent observation taken from $\mathrm{U}(0$, 2). Let $x_{(1)}, x_{(2)}, \ldots, x_{(n) 1}$ be the ordered pair of sample observations. Then the joint distribution of is $x_{(1)}, x_{(2)}, \ldots, x_{(m)}$ is

A:-n!
B:- $-\frac{1}{2^{n}}$
C:- $!\left(\frac{(\pi}{2}\right)^{n}$
D: $-\frac{n^{2}}{2^{n}}$
Correct Answer:- Option-D

Question57:-Ratio of squares of two independent standard normal variate is
A:-t distribution with 1 degrees of freedom
B:-F distribution with $(1,1)$ degrees of freedom
C:-Standard Normal distribution
D:- x^{2} distribution with 1 degree of freedom
Correct Answer:- Option-B
Question58:-Suppose x_{1}, x_{2} and x_{3} are three independent standard normal variates.
Then the distribution of $\frac{x_{1}+x_{2}+x_{3}}{\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}}$ is
A:-N $(0,3)$
B:- x^{2} distribution with 3 degrees of freedom
C:-F distribution with $(1,1)$ degrees of freedom
D:-t distribution with 3 degrees of freedom
Correct Answer:- Option-D
Question59:-The mark of students of a class is normally distributed with mean 35 and standard deviation 5 . The probability of a student mark between 25 and 45 is

A:-0.4772
B:-0.0228
C:-0.9544
D:-0.0456
Correct Answer:- Option-C
Question60:-The coefficient of variation of Poisson distribution with mean 16 is
A:-25\%
B:-50\%
C:-100\%
D:-75\%
Correct Answer:- Option-A
Question61:-Let X be $N_{3}(\mu, \Sigma)$ with $\Sigma=\left[\begin{array}{lll}4 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 2\end{array}\right]_{\text {Which of the following statements }}$ is/are true?
(i) x_{1} and x_{2} are independent
(ii) x_{1} and x_{2} are not independent
(iii) $\left(x_{1}, x_{2}\right)$ and x_{3} are independent
(iv) (x_{1}, x_{2}) and x_{3} are not independent

A:-Only (i and iii)
B:-Only (i and iv)
C:-Only (ii and iii)
D:-Only (ii and iv)

Correct Answer:- Option-C
Question62:-Sum of independent products of multivariate normal random vectors is
A:-Wishart Distribution
B:-Chi Square Distribution
C:-Hotelling T^{2}
D:-Mahalanobis D^{2}
Correct Answer:- Option-A
Question63:-Let X be $N_{3}(\mu, \Sigma)$ with $\mu^{\prime}=\left[\begin{array}{lll}1 & -2 & 1\end{array}\right]$ and $\Sigma=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 2 & 1\end{array}\right]$. Find the distribution of $X_{1}-2 X_{2}-X_{3}$

A: $-N_{3}(\mu, \Sigma)$
B:-N($\mu, 6$)
C:-N(4, 14)
D:-N(4, 6)
Correct Answer:- Option-C
Question64:-Let $x_{1}, x_{2}, \ldots, x_{10}$ be a random sample of size 10 from $N_{5}(\mu, \Sigma)$. Then the distribution of $10(\bar{X}-\mu)^{\prime} \Sigma^{-1}(\bar{X}-\mu)$ is

A: $-{ }^{\chi_{5}^{2}}$
B:- x_{10}^{2}
C:-W $(\Sigma, 10)$
D:-W $(\Sigma, 5)$
Correct Answer:- Option-A
Question65:-Let A_{1} and A_{2} are independently distributed with $W(\Sigma, 2)$ and $W(\Sigma, 5)$ respectively. Then the distribution of $A_{1}+A_{2}$ is

A:-W($\Sigma, 10)$
B:-W $(\Sigma, 2)$
C:-W($\Sigma, 5$)
D:-W($\Sigma, 7)$
Correct Answer:- Option-D
Question66:-Multivariate Behrin Fisher's problem is
A:-Testing of Mean vector is equal to a given vector when the covariance matrix is known

B:-Testing the equality of means of two multivariate populations when the covariance matrices are equal

C:-Testing the equality of means of two multivariate populations when the covariance matrices are not equal

D:-Testing of mean vector is equal to a given vector when the covariance
matrix is unknown
Correct Answer:- Option-C
Question67:-Consider the testing of equality of means of two multivariate normal populations
$N\left(\mu^{(1)}, \Sigma\right)$ and $N\left(\mu^{(2)}, \Sigma\right)$. Then the relationship between Hotelling T^{2} and Mahalanobis D^{2}.
$\mathrm{A}:-T^{2}={\frac{N_{1}+N_{2}}{N_{1} N_{2}}}_{D^{2}}$
B:-T $T^{2}=\frac{N_{1} N_{2}}{N_{1}+N_{2}} D_{D^{2}}$
C: $-T^{2}=\left(N_{1}+N_{2}-2\right)_{D^{2}}$
D:- $D^{2}=\left(N_{1}+N_{2}-2\right) T^{2}$
Correct Answer:- Option-B
Question68:-Suppose $X \sim N_{p}(\mu, \Sigma)$ and S is the sample covariance matrix of a sample of size N. then the Statistic $N(\bar{X}-\mu)^{\prime} s^{-1}(\bar{X}-\mu)$ is

A:-Wishart distribution
B:-Normal distribution
C:-Hotelling T^{2}
D:-Chi square distribution
Correct Answer:- Option-C
Question69:-Suppose the random variables x_{1} and x_{2} have covariance matrix $\left[\begin{array}{ll}5 & 2 \\ 2 & 2\end{array}\right]$. Proportion of the total population variance explained by first principal component is

A:-1/7
B:-6/7
C:-5/7
D:-2/7
Correct Answer:- Option-B
Question70:-Consider an orthogonal factor model $X=M+L F+\epsilon$. Which of the following statements is/are true ?
i. Covariance matrix of specific factors is a diagonal matrix.
ii. Common factors and specific factors are uncorrelated.
iii. Variance of $i^{\text {th }}$ variable is the $i^{\text {th }}$ communality.

A:-Only (i and ii)
B:-Only (iii)
C:-all the above (i, ii and iii)
D:-Only (i)
Correct Answer:- Option-A
Question71:-The transition probability matrix of a Markov chain $\left\{x_{n}, \mathrm{n} \geq 0\right\}$ having

$P\left(X_{0}=i\right)=\frac{1}{3} i=0,1,2$.
The value of $P\left[X_{3}=1, X_{2}=2, X_{1}=1, X_{0}=0\right]$ is
A:-1/3
B:-1/54
C:-1/9
D:-2/3
Correct Answer:- Option-B
Question72:-Suppose a Markov chain $\left\{x_{n}\right\}$ have a state space $\{1,2,3,4\}$ and
 is/are true?
(i) Markov chain $\left\{x_{n}\right\}$ is irreducible
(ii) Markov chain $\left\{x_{n}\right\}$ is aperiodic
(iii) Markov chain $\left\{x_{n}\right\}$ does not have a stationary distribution

A:-Only (i)
B:-Only (ii and iii)
C:-All of the above (i, ii and iii)
D:-Only (i and ii)
Correct Answer:- Option-D
Question73:-Let $\left\{x_{n}\right\}$ be a Markov chain having a state space $\{1,2,3,4\}$ and transition probability matrix is given by $P=\left[\begin{array}{ccc}\frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 \\ 2 & \frac{1}{2} & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$. Find $\lim _{n \rightarrow \infty} P_{11}^{n}$

A:- ∞
B:-1
C:-0
D:-1/2
Correct Answer:- Option-C
Question74:-Let $\left\{X_{n}\right\}$ be a Markov chain having a state space $\{0,1,2\}$ and transition probability matrix is given by $P=\left[\begin{array}{ccc}0 & 1 & 0 \\ 2 & 0 \\ 0 & 0 \\ 0 & 1 & 0\end{array}\right]$. Which of the following states are ergodic ?

A:- $\{0,2\}$
B:-All the states
C:-1
D:-None of the states
Correct Answer:- Option-D

Question75:-Let $\left\{X_{n}\right\}$ be a Markov chain having a state space $\{1,2,3,4,5\}$ and transition probability matrix is given by $P=\left[\begin{array}{cccc}\frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 0 & 0 \\ \frac{1}{5} & \frac{2}{5} \\ \frac{1}{5} & \frac{1}{3} \\ \frac{1}{4} & 5 & 5 \\ 4 & 0 & \frac{3}{4} \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & \frac{1}{2}\end{array}\right]$
Which of the following statements is/are correct ?
i. 1 and 4 are in the same communicating class.
ii. 2 and 3 are in the same communicating class.
iii. 2 and 5 are in the same communicating class.
iv. 3 and 4 are in the same communicating class.

A:-Only (i and iii)
B:-Only (ii and iii)
C:-Only (iv)
D:-All the above (i, ii, iii and iv)
Correct Answer:- Option-A
Question76:-The interval between two successive occurrence of a Poisson process $N(t), t \geq 0$ having parameter λ follows

A:-Exponential with mean λ
B:-Exponential with mean $\frac{1}{\lambda}$
C:-Poisson with parameter λ
D:-Geometric distribution with parameter λ
Correct Answer:- Option-B
Question77:-Suppose $\left\{x_{n}\right\}$ is a random walk on real line. A unit is moving from state i to $i+1$ with probability $1 / 2$ and also from state i to $i-1$ with probability $1 / 2$. Then random walk is
(i) Recurrent
(ii) Null recurrent
(iii) Aperiodic
(iv) Ergodic

A:-All of the above (i, ii, iii and iv)
B:-Only (i and ii)
C:-Only (i, ii and iii)
D:-Only (iii)
Correct Answer:- Option-B
Question78:-Consider a birth and death process with λ as birth rate and μ as death rate. The probability of ultimate extinction when the death rate is greater than the birth rate is

A: $-\frac{\lambda}{\mu}$
B:-1
C:-<1
D:-0

Correct Answer:- Option-B
Question79:-Consider a queuing model $M / M / 1$ with interarrival time λ and service time μ. Which of the following statements is/are correct ?
(i) Steady state distribution of Queue length exist if $\lambda<\mu$
(ii) Steady state distribution of Queue length exist if $\lambda>\mu$
(iii) Steady state distribution is given by Geometric distribution

A:-Only (i and iii)
B:-Only (ii and iii)
C:-Only (i)
D:-Only (iii)
Correct Answer:- Option-A
Question80:-Suppose $N(t)$ is a renewal process generated by exponential random variables $x_{1}, x_{2}, \ldots, x_{n}$ with parameter λ and $\mathrm{H}(\mathrm{t})$ is a renewal function. Which of the following statements is/are true?
(i) $\mathrm{N}(\mathrm{t})$ is a Poisson process
(ii) Renewal function $\mathrm{H}(\mathrm{t})$ is $\frac{t}{E(X)}$
(iii) $\lim _{t \rightarrow \infty} \frac{H(t)}{t}=0$ if $E(X)=\infty$

A:-Only (i)
B:-Only (ii and iii)
C:-Only (ii)
D:-All of the above (i, ii and iii)
Correct Answer:- Option-D
Question81:-Consider the simple linear regression model $\mathrm{y}=\beta_{0}+\beta_{1}+\epsilon$, Which of the following is a wrong statement?

A:-Mean of Y is a linear function in X
B:-Variance of Y depends on the value of X
C:-Response variables are uncorrelated
D:-The sum of the residuals in simple linear regression models is always zero
Correct Answer:-Question Cancelled
Question82:-Consider the simple linear regression model $\mathrm{y}=\beta_{0}+\beta_{1} \mathrm{X}+\epsilon$, Which of the following estimates are not unbiased ?

A:-Least square estimates of β_{0} and β_{1}
B:-Maximum likelihood estimates of β_{0} and β_{1}
C:-Least square estimates of σ^{2}
D:-Maximum likelihood estimates of σ^{2}
Correct Answer:- Option-D
Question83:-Consider the simple linear regression model $\mathrm{y}=\beta_{0}+\beta_{1} \mathrm{X}+\epsilon$ where \in ' S are uncorrelated with mean zero and variance σ^{2}, What is the value of $\operatorname{Cov}\left(\widehat{\beta_{0}}, \widehat{\beta_{1}}\right)$?

$$
\text { A:- } \frac{-\overline{\bar{x}^{2}}}{S_{X X}} \text { where } S_{X X}=\sum\left(X_{i}-\bar{X}\right)^{2}
$$

B:- $\frac{-\overline{\bar{\sigma}^{2}}{ }^{2}}{S_{X Y}}$ where $S_{X Y}=\sum Y_{i}\left(X_{i}-\bar{X}\right)$
C:- σ^{2}
D:- $\frac{\sigma^{2}}{S_{X X}}$ where $S_{X X}=\Sigma\left(X_{i}-\bar{X}\right)^{2}$
Correct Answer:- Option-A
Question84:-Consider a multiple linear regression model $Y=X \beta+\epsilon$ with hat matrix $\mathrm{H}=\left(h_{i j}\right)$. The variance of $i^{\text {th }}$ residual is

A: $-\sigma^{2}$
B:- $\sigma^{2} h_{i i}$
C:- $\sigma^{2}\left(1-h_{i i}\right)$

D:-(1 - $\left.h_{i i}\right)$
Correct Answer:- Option-C
Question85:-Consider a multiple linear regression model $Y=X \beta+\epsilon, \epsilon$'s are uncorrelated with mean zero and variance σ^{2} where the regression matrix X is
$\left[\begin{array}{cc}1 & 0 \\ 2 & -1 \\ 1 & 2\end{array}\right]$ and $\beta^{\prime}=\left(\beta_{0}, \beta_{1}\right)$. Find variance of $\widehat{\beta_{1}}$
A:-6 ${ }^{2}$
B: $-\frac{\sigma^{2}}{6}$
C:-5 σ^{2}
D:- $\frac{\sigma^{2}}{5}$
Correct Answer:- Option-D
Question86:-Which of the following is/are polynomial regression models ?
(i) $\mathrm{y}=\beta_{0}+\beta_{1} \mathrm{X}+\epsilon$
(ii) $y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{11} X_{1}^{2}+\beta_{22} X_{2}^{2}+\beta_{12} X_{1} X_{2}+\epsilon$
(iii) $y=\beta_{0}+\beta_{1}^{2} X_{1}+\beta_{2}^{2} X_{2}+\epsilon$

A:-Only (i)
B:-Only (i and ii)
C:-All of the above (i , ii and iii)
D:-None of the above
Correct Answer:- Option-B

Question87:-Suppose collinearity is present in a regression model then which of the statements is/are correct ?
(i) Least Square estimate of Regression coefficients have large variances
(ii) Eigenvalues of matrix $\mathrm{X}^{\prime} \mathrm{X}$ is large
(iii) Estimated coefficients have large variance inflation factor

A:-Only (i and iii)
B:-None of the above
C:-Only (i)
D:-Only (ii)
Correct Answer:- Option-A
Question88:-Suppose consider a logistic regression model with one regressor, the estimated increase in the odds ratio associated with a change of one unit in the predictor variable is
$\mathrm{A}:-\beta_{1}$
B:- $e^{\widehat{\beta_{1}}}$
C: $-\log \widehat{\beta_{1}}$
D: $: \widehat{-}$
Correct Answer:- Option-B
Question89:-Which of the following link function is suitable for Poisson Regression model ?

A:-Identity link function
B:-Log link function
C:-Reciprocal link function
D:-Logistic function
Correct Answer:- Option-B
Question90:-Consider a multiple linear regression model $Y=X \beta+\epsilon$, Where $V(\epsilon)=$ $\sigma^{2} \mathrm{~V}$ Then which of the following is correct?

A:-Ordinary least square estimator is biased
B:-Ordinary least square estimator is minimum variance unbiased
C:-If V is a diagonal matrix but with unequal diagonal elements, then the observations y are correlated

D:-Generalised least square estimate is minimum variance unbiased
Correct Answer:- Option-D
Question91:-Let f be a Reimann integrable function on a closed interval [a, b]. Then which of the following statements is true ?

A:-f is continuous on [a, b]
B :- f is monotonic on [a, b]
C:- $-f^{2}$ is Reimann integrable over [a, b]

D:-None of the above
Correct Answer:- Option-C
Question92:-Suppose f be defined on [0, 1] by
$\mathrm{f}(\mathrm{t})=1 \quad 0 \leq \mathrm{t} \leq 1 / 3$
$=2 \quad 1 / 3<t<2 / 3$
$=3 \quad 2 / 3 \leq \mathrm{t} \leq 1$
$\alpha=\mathrm{f}$ and $\beta(\mathrm{t})={ }_{t^{2}}$. Then which of the following is not true?
A:-f is integrable with respect to α
B:-f is integrable with respect to β
C: $-\mathrm{f}_{\beta}$ is Reimann integrable
D:-f f_{α} is Reimann integrable
Correct Answer:- Option-A
Question93:-Evaluate the Integral $\int_{0}^{1} \frac{x^{2}}{\sqrt{1-x^{3}}} d x$
A: $-\frac{\pi}{2}$
B:- $-\frac{\pi}{4}$
C:- π
D:-0
Correct Answer:-Question Cancelled
Question94:-The series $1+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\ldots$. , is divergent when
A:-P>1
B:-0<P<1
C: $-0<P \leq 1$
D:-P < 1
Correct Answer:- Option-C
Question95:-Consider $f(x, y)=\frac{x y}{x^{2}+y^{2}}$ if $(x, y) \neq(0,0)$
$=0 \quad$ if $(x, y)=(0,0)$
Which of the following statement is true ?
A:- $f(x, y)$ is continuous at $(0,0)$
B:-Partial derivatives $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ exist at $(0,0)$
C:-f is differentiable at $(0,0)$
D:-None of the above
Correct Answer:- Option-B
Question96:-Find the determinant of Matrix $A=\left[\begin{array}{cccccc}1 & 6 & 1 & 0 & 0 & 0 \\ 5 & 6 & 4 & 0 & 0 & 0 \\ 2 & 3 & 4 & 0 & 0 & 0 \\ 3 & 4 & 3 & 5 & 0 & 0 \\ 2 & 3 & 2 & 2 & 1 & 3 \\ 1 & 5 & 1 & 5 & 4 & 6\end{array}\right]$
A:-0

B:-57
C:-1710
D:-None of the above
Correct Answer:- Option-C
Question97:-Suppose A is an idempotent matrix of order n then which of the following statements
are true ?
(i) $A^{r}=\mathrm{A}$ for being a positive integer
(ii) A-I is idempotent
(iii) I-A is Idempotent
(iv) Rank (A) = trace (A)

A:-All the above (i, ii, iii and iv)
B:-Only (i, ii and iii)
C:-Only (iii and iv)
D:-Only (i, iii and iv)
Correct Answer:- Option-D
Question98:-Suppose $A=\left[\begin{array}{ccc}2 & 2 & 0 \\ 2 & 1 & 1 \\ -7 & 2 & -3\end{array}\right]$ find the eigenvalues of A^{4}
A:-1, 3, -4
B:-1, 81, 256
C:-2, 1, -3
D:-1, 9, 16
Correct Answer:- Option-B
Question99:-Consider the matrix $A=\left[\begin{array}{lll}1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 2\end{array}\right]$. What is the Geometric multiplicity and algebraic multiplicity of eigenvalue one ?

A:-1 and 2 respectively
B:-2 and 1 respectively
C:-1 and 1 respectively
D:-2 and 2 respectively
Correct Answer:- Option-A
Question100:-Suppose $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2\end{array}\right]$, which of the following statements is/are true ?
(i) A is positive definite matrix
(ii) A is positive semi definite matrix
(iii) A is non negative definite matrix
(iv) Quadratic form corresponding to matrix A is $X_{1}^{2}+X_{3}^{2}$

A:-Only (iv) is true

B:-Only (ii, iii and iv)
C:-Only (ii and iv)
D:-Only (iii and iv)
Correct Answer:-Question Cancelled

