043/2022

1.

Maximum: 100 marks

Which among the following formation is not an example of Covalent bond?

Time: 1 hour and 30 minutes

	(A)	LiF	(B)	NH_3		
	(C)	CF_4	(D)	HF		
2.	The wave length of a spectral line for an electronic transition is inversely related to:					
	(A)	Number of electrons undergoing to	ransition			
	(B)	The nuclear charge of the atoms				
	(C)	The difference in the energy levels	sinvolved	in the transition		
	(D)	The velocity of an electron underg	oing trans	sition		
3.	Which of	the following quantum number has n	ot been de	erived from Schrodinger wave equations?		
	(A)	Principal quantum number	(B)	Subsidiary quantum number		
	(C)	Magnetic quantum number	(D)	Spin quantum number		
4.	Increasin	g order of electronegativity is :				
	(A)	Bi < P < S < Cl	(B)	P < Bi < S < Cl		
	(C)	C > F > N > O	(D)	F > O > N > C		
5.	Examples of super octet molecule is:					
	(A)	PCl_5	(B)	SF_6		
	(C)	IF_{7}	(D)	All of these		
6.	When P_4O_{10} is dissolved in water, the acid formed finally is:					
	(A)	H_3PO_2	(B)	$\mathrm{H_{3}PO_{4}}$		
	(C)	H_3PO_3	(D)	$\mathrm{H_4P_2O_7}$		
7.	XeF_2 reacts with PF_5 to give :					
	(A)	XeF_{6}	(B)	$[XeF]^+[PF_6]^-$		
	(C)	XeF_{4}	(D)	$[\mathrm{PF}_4]^+ [\mathrm{XeF}_3]^-$		
8.	volume, T	is the temperature and R is the gas	s constant			
	(A)	J/Kg.K	(B)	m³/Kg		
	(C)	$ m m^5/KgS^2$	(D)	Pa/Kg		
A		3		ID TO 1		
				[P.T.O.]		

9.	Which of the following can not exist on the basis of Molecular orbital theory?					
	(A)	$\mathrm{H_2}^+$	(B)	$\mathrm{He_2}^+$		
	(C)	C_2	(D)	He_2		
10.	Cesium chloride on heating to 760K changes into :					
	(A)	NaCl structure	(B)	CsCl(g)		
	(C)	Antifluorite structure	(D)	ZnS structure		
11.	Effective	Atomic Number (EAN) of F	'e in Fe(CO) ₄ is:			
	(A)	34	(B)	35		
	(C)	36	(D)	37		
12.	Hybridiza	ation of Fe in $K_3[Fe(CN_6)]$ a	nd $K_4[Fe(CN_6)]$:			
	(A)	d^2sp^3 and sp^3d^2	(B)	$\mathrm{sp^3d^2}$ and $\mathrm{sp^3d^2}$		
	(C)	d^2sp^3 and d^2sp^3	(D)	$\mathrm{sp^3d^2}$ and $\mathrm{d^2sp^3}$		
13.	Which of the following metal has lowest melting point?					
	(A)	Antimony	(B)	Silver		
	(C)	Tin	(D)	Zinc		
14.	The element with maximum cosmic abundance:					
	(A)	Hydrogen	(B)	Helium		
	(C)	Nitrogen	(D)	Oxygen		
15.	Among the following mixtures, dipole-dipole as the major interaction, is present in:					
	(A)	Benzene and ethanol	(B)	Acetonitrile and acetone		
	(C)	KCl and water	(D)	Benzene and carbon tetrachloride		
16.	The value of n in the molecular formula $Be_nAl_2Si_6O_{18}$ is :					
	(A)	3	(B)	5		
	(C)	7	(D)	9		
17.	What is the role of ultra violet radiation in water purification system?					
	1. It inactivates / kill the harmful microorganisms in water					
	2. It re	emoves all the undesirable	odours from the w	ater		
		uickens the sedimentation ch of the statements given	-	es and improves the clarity of water ted		
	(A)	1 only	(B)	2 and 3 only		
	(C)	1 and 3 only	(D)	1, 2 and 3		

18.	The pH o	f water at 250 is 7, when it	is heated to 100°C	the pH of water:		
	(A)	Increases	(B)	Decreases		
	(C)	Remain same	(D)	Decreases up to 50°C and then increases		
19.	Which of the following copper alloys is used for the manufacture of springs and suspension of springs and suspension filaments in electrical instruments?					
	(A)	Bronze	(B)	Aluminum bronze		
	(C)	German silver	(D)	Phosphor bronze		
20.	Which of the following is/are the hazardous pollutant(s) present in automobiles exhaust gases?					
	1. N ₂					
	2. CO					
	3. CH	4				
	4. Oxi	des of nitrogen				
	(A)	2 and 3	(B)	1 and 2		
	(C)	2 and 4	(D)	1 and 3		
21.	Which of the following is correctly matched?					
	(A)	Aluminum – Haemati				
	(B)	Lead – Galena				
	(C)	Iron – Bauxite				
	(D)	Magnesium – Malachit	e			
22.	In cold water, aquatic animals survive even when water to the top layer of the lake freezes into ice because:					
	(A)	They can breathe in ice				
	(B)	(B) They have enough of accumulated oxygen inside them				
	(C) Their body structure is such that they can survive without oxygen					
	(D)	Water has structure dens water	ity of 4°C so unde	erneath the top layer of there is layer of		
23.	Ferrocene	e cannot undergo which of t	he following react	ion?		
	(A)	Friedal craft acylation	(B)	Diels-Alder reaction		
	(C)	Oxidation by Ag ⁺ ions	(D)	Electrophilic substitution		
24.	According	g to wade's Rule, $[\mathrm{C_2B_{10}H_{12}}]$	adopts which typ	e of structure?		
	(A)	closo structure	(B)	nido structure		
	(C)	archano structure	(D)	hypo structure		
A			5	043/2022 [P.T.O.]		

- **25.** Which of these can be used as moth repellent?
 - (A) Benzene hexachloride

(B) Benzal chloride

(C) Hexachloroethane

- (D) Tetrachloroethane
- **26.** What is the major organic product obtained from the following reaction?

- **27.** Which of the following statement is incorrect about nucleophiles?
 - (A) Nucleophiles have an unshared electron pair and can make use of this to react with an electron deficient species
 - (B) The nucleophilicity of an element (an electron donor) generally increases on going down a group in the periodic table
 - (C) A nucleophile is electron-deficient species
 - (D) All good nucleophiles are good bases when we deal across the period
- **28.** A layer of reddish-brown precipitate which is formed on the iron knife, when an iron knife is dipped in an aqueous solution of copper sulphate is of which compound or element?
 - (A) Iron sulphate

(B) Copper

(C) Rust

- (D) Copper sulphate
- 29. Who proposed arrow pushing method of showing progression of elections?
 - (A) Robert Burns Woodward

(B) Adolf Von Baeyer

(C) Victor Grignard

- (D) Sir Robert Robinson
- **30.** What is obtained by thermolysis of azides?

(A) Free radicals

(B) Carbocation

(C) Nitrene

(D) Arene

- 31. Results from long-term exposure to lower doses of a chemical is known as
 - (A) Acute toxicity

(B) Chronic toxicity

(C) Moderate toxicity

(D) High toxicity

32.	LD50 in a toxicity test stands for					
	(A)	a dose that will kill 50% of a	n exposed popu	lation		
	(B)	B) a dose that would not affect or harm 50% of an exposed population				
	(C)	a dose that will kill 25% of a	n exposed popu	lation		
	(D)	a dose that would not kill 25	% of an expose	d population		
33.	Which of the following is not soluble in NaHCO ₃ ?					
	(A)	2, 4, 6-Trinitrophenol	(B)	Benzoic acid		
	(C)	o-Nitrophenol	(D)	Benzene sulphonic acid		
34.	The produ	act formed by the reaction of a	n aldehyde wit	n a primary amine is :		
	(A)	Carboxylic acid	(B)	Aromatic acid		
	(C)	Ketone	(D)	Schiff's base		
35 .	Which of	the following is most reactive t	towards S _N 1 rea	action?		
	(A)	$\mathrm{C_6H_5C(CH_3)C_6H_5Br}$	(B)	$\mathrm{C_6H_5CH_2Br}$		
	(C)	$\mathrm{C_6H_5CH}(\mathrm{C_6H_5})\mathrm{Br}$	(D)	$\mathrm{C_6H_5CH(CH_3)Br}$		
36.	A dihalogen derivative 'X' of a hydrocarbon with three carbon atoms react with ale. KOH and produces hydrocarbon which forms red ppt. with ammoniacal Cu_2Cl_2 . 'X' gives an aldehyde on reaction with aq. KOH. The compound 'X' is (A) 1, 3-Dichloropropane (B) 1, 2-Dichloropropane					
	(C)	2, 2-Dichloropropane	(D)	1, 1-Dichloropropane		
	(0)	2, 2-Dichioropropane	(D)	1, 1-Dicinoropropane		
37.	The synthesis of alkyl fluoride is best accomplished by:					
	(A)	Finkelstein reaction	(B)	Swartz reaction		
	(C)	Free radical fluorination	(D)	Sandmeyer's reaction		
38.	Which of the following compounds will give racemic mixture on nucleophilic substitution by OH" ion?					
	1 -Bromoethane, 1-Bromopropane, 1-Bromobutane, Bromobenzene					
	(A) Bromobenzene < 1-Bromobutane < 1-Bromopropane < 1-Bromoethane					
	(B) Bromobenzene < 1-Bromoethane < 1-Bromopropane < 1-Bromobutane					
	(C)	(C) 1-Bromopropane < 1-Bromobutane < 1-Bromoethane < Bromobenzene				
	(D)	1-Bromoethane < 1-Bromopr	opane < 1-Bror	nobutane < Bromobenzene		
39.	Which of	the following has ester linkage	es?			
	(A)	Nylon	(B)	Bakelite		
	(C)	Terylene	(D)	PVC		
A			7		/2022 P.T.O.]	

40.	Zeigler-Natta catalyst is used in making:					
	(A)	Low density polyethylene	(B)	High density polyethylene		
	(C)	Polystyrene	(D)	PMMA		
41.	What wil		ng energ	gy equal to or greater than activation		
	(A)	K	(B)	A		
	(C)	$\mathrm{Ae^{-Ea/Rt}}$	(D)	$\mathrm{e}^{-\mathrm{Ea/Rt}}$		
42.	What is the	he geometry of pentacarbonyl iron (0))?			
	(A)	Square planar	(B)	Tetrahedral		
	(C)	Trigonal bipyramidal	(D)	Octahedral		
43.	Which of	the following will give effective reduc	tion of 3	-hexyne to trans-3-hexene?		
	(A)	H ₂ /Lindlar's catalyst	(B)	Na/liq. NH ₃		
	(C)	Fe/NaCl	(D)	DIBAL		
44.	62.5 (3H,	•		ne following ¹ H NMR special data 2H, d, J 8 Hz) ppm. What will be the 4-methyl anisole 2-ethylphenol		
	(0)	4-culyiphenor	(D)	2-conyrphenor		
45.		omolecules simply refers as "Staff of				
	(A)	Vitamins	(B)	Carbohydrate		
	(C)	Lipids	(D)	Protein		
46.	Who disco	overed the mass spectrometer?				
	(A)	Walter Kaufmann	(B)	Ernest O. Lawrence		
	(C)	Francis Aston	(D)	J.J. Thomson		
47 .	Which of	the following is a product formed in (Claisen c	ondensation?		
	(A)	eta -ester	(B)	eta -ketone		
	(C)	eta -keto ester	(D)	Y-diketone		
48.	Which of	the following will form alkyl bromide	on react	tion with Br_2 ?		
	(A)	Alcohols	(B)	Alkenes		
	(C)	Silver salt of fatty acids	(D)	All of these		
	` /	U	` /			

Reaction of chlorobenzene with $NaNH_2 / NH_3$ forms :					
(A)	Carbene	(B)	Carbocation		
(C)	Carbanion	(D)	Benzyne		
Bischler-l	Napieralski synthesis is used to	prepare:			
(A)	Pyridine	(B)	Pyrazine		
(C)	Isoquinoline	(D)	Quinoline		
Which of ring?	the following is a hetrocyclic of	compound not	having 2 nitrogen atoms in the same		
(A)	Isoxazole	(B)	Pyrimidine		
(C)	Pyrazine	(D)	Pyridazine		
Chlorinat	ion of toluene with excess Cl_2 i	n presence of	heat followed by hydrolysis gives:		
(A)	Benzyl alcohol	(B)	Benzoic acid		
(C)	o-Cresol	(D)	p-Cresol		
Alkyl halide may be converted to alkane by reduction with:					
(A)	Zn/Cu/HCl	(B)	H_2/Pt		
(C)	$\mathrm{NaNH}_{2}/\mathrm{NH}_{3}$	(D)	All of these		
LiAlH ₄ c	onverts acetic acid into :				
(A)	Acetaldehyde	(B)	Ethane		
(C)	Ethanol	(D)	Methanol		
A pure organic compound dissolved in dry benzene evolves hydrogen on reaction with sodium. It may be:					
(A)	Ether	(B)	Alcohol		
(C)	Aldehyde	(D)	Ketone		
To obtain 1-Propanol from propene, the reagent of choice is:					
(A)	$\mathrm{OsO_4/CH_2Cl_2}$	(B)	O ₃ /Zn dust		
(C)	${\rm Alk.KMnO_4}$	(D)	$\mathrm{B_2H_6/Alk.H_2O_2}$		
Ethanol n	nay be distinguished from meth	anol by :			
(A)	Benedict's test	(B)	Tollen's test		
(C)	Iodoform test	(D)	Lucas test		
	(A) (C) Bischler-R (A) (C) Which of ring? (A) (C) Chlorinat (A) (C) Alkyl hali (A) (C) LiAlH ₄ ce (A) (C) A pure of sodium. In (A) (C) To obtain (A) (C) Ethanol m (A)	(A) Carbene (C) Carbanion Bischler-Napieralski synthesis is used to (A) Pyridine (C) Isoquinoline Which of the following is a hetrocyclic oring? (A) Isoxazole (C) Pyrazine Chlorination of toluene with excess Cl ₂ in (A) Benzyl alcohol (C) o-Cresol Alkyl halide may be converted to alkane in (A) Zn/Cu/HCl (C) NaNH ₂ /NH ₃ LiAlH ₄ converts acetic acid into: (A) Acetaldehyde (C) Ethanol A pure organic compound dissolved in sodium. It may be: (A) Ether (C) Aldehyde To obtain 1-Propanol from propene, the reconstruction of the property of the property of the propension of the property of the pro	(A) Carbene (C) Carbanion (D) Bischler-Napieralski synthesis is used to prepare: (A) Pyridine (B) (C) Isoquinoline (D) Which of the following is a hetrocyclic compound not ring? (A) Isoxazole (B) (C) Pyrazine (D) Chlorination of toluene with excess Cl2 in presence of (A) Benzyl alcohol (B) (C) o-Cresol (D) Alkyl halide may be converted to alkane by reduction v (A) Zn/Cu/HCl (B) (C) NaNH2/NH3 (D) LiAlH4 converts acetic acid into: (A) Acetaldehyde (B) (C) Ethanol (D) A pure organic compound dissolved in dry benzence sodium. It may be: (A) Ether (B) (C) Aldehyde (D) To obtain 1-Propanol from propene, the reagent of choice (A) OsO4/CH2Cl2 (C) Alk.KMnO4 (D) Ethanol may be distinguished from methanol by: (A) Benedict's test (B)		

58.	Oxymercuration of alkenes may be used to prepare:					
	(A)	Alkanes	(B)	Alkynes		
	(C)	Alkanoic acid	(D)	Alcohols		
59.	The reaction, which is used to convert phenol to salicylic acid is:					
	(A)	Kolbe-Schmidt reaction	(B)	Phthalein reaction		
	(C)	Leibermann reaction	(D)	Cannizzaro reaction		
60.	Reformatsky reaction is the reaction between a carbonyl compound, zinc and:					
	(A)	Unsaturated acid	(B)	Unsaturated ester		
	(C)	lpha -Halo ester	(D)	$oldsymbol{eta}$ -Halo ester		
61.	The reage	ent which is capable of reacting both w	ith ald	ehyde as well as ketone :		
	(A)	Schiff's reagent	(B)	Grignard reagent		
	(C)	Tollen's reagent	(D)	Fehling's solution		
62 .	Benzoin c	ondensation takes place between :				
	(A)	Aromatic aldehyde and aromatic ket	one			
	(B)	Aromatic aldehyde and aliphatic keto	one			
	(C)	Aromatic aldehyde and aliphatic alde	ehyde			
	(D)	Aromatic aldehyde only				
63.	Which of the following method is specific for the preparation of aromatic aldehydes?					
	(A)	Stephen's reaction	(B)	Etard's reaction		
	(C)	Rosenmund reduction	(D)	Hydrolysis of gem dihalides		
64.	Perbenzoic acid reacts with alkenes to form:					
	(A)	Epoxides	(B)	Ethers		
	(C)	Glycols	(D)	Alcohols		
65 .	Hell Volhard Zelenski reaction is used to prepare :					
	(A)	Acid halides	(B)	Nuclear halogen acid halides		
	(C)	Nuclear halogen acids	(D)	Side chain halogen acids		
66.	helium. I			hydrogen and the other with 1 mole of are the same, then the ratio of the		
	(A)	$\frac{1}{2}$	(B)	$\frac{2}{1}$		
	(C)	$\frac{1}{\sqrt{2}}$	(D)	$\sqrt{2}$		

A			11	043/2022 [P.T.O.]	
	(C)	changing temperature	(D)	adding catalyst	
	(A)	adding reactant	(B)	adding product	
75 .	Which of	the following change the val	ue of K?		
	(C)	$4 \times 10^{-4} \text{ mol/L}$	(D)	$1 \times 10^{-4} \text{ mol/L}$	
	(A)	$4 \times 10^{-12} \text{ mol/L}$	(B)	$1 \times 10^{-12} \text{ mol/L}$	
		in the saturated aqueous so			
74.	K_{sp} of a salt, with general formula MX_2 , in water is 4×10^{-12} . Calculate the concentration of				
74	V ~ f -	olt with managed former.	[V in 4	v 10-12 Coloulate the account of	
	(C)	$2.41~\mathrm{gm}$	(D)	2.14 gm	
	(A)	$4.12~\mathrm{gm}$	(B)	4.21 gm	
7 3.				non-volatile liquid, whose molecular e, by 2% lowering of vapour pressure :	
	, ,		, ,		
	(C)	272.64 K	(D)	276.24 K	
	(A)	273 K	(B)	373 K	
72.	Calculate the freezing point of an aqueous solution of urea, it is boils at 373.1 K $\rm K_f=1.8~K~Kg/mol,~K_b=0.5~K~Kg/mol$:				
	(C)	0.12	(D)	0.88	
	(A)	12	(B)	88	
71.	A gas at temperature 250 K and pressure 15 atm, has a molar volume 12% smaller than that calculated from ideal gas equation, then compressibility factor under these condition is :				
	(C)	$24\sqrt{3}:1$	(D)	$1:24\sqrt{3}$	
	` ′	$8:3\sqrt{3}$		$3\sqrt{3}:8$	
70.		of the total volume of bcc to	_		
70	The makin	of the total values of hee to	ainenla aubia akuu	akuna ia i	
	(C)	$\mathrm{CO}_2 > \mathrm{SO}_2 > \mathrm{PCl}_3 > \mathrm{SO}_3$	(D)	$\mathrm{CO}_2 > \mathrm{SO}_2 > \mathrm{SO}_3 > \mathrm{PCl}_3$	
	(A)	$PCl_3 > SO_3 > SO_2 > CO_2$	(B)	$SO_2 > SO_3 > PCl_3 > CO_2$	
69.	The rate of	of diffusion of SO_3, CO_2, PCl	$_3$ and SO_2 are in	the following order:	
	(C)	1:1.128:1.224	(D)	1:1.428:1.441	
	(A)	1:1.28:1.224	(B)	1:1.28:1.424	
68.	Most prob	oable velocity, average veloc	ity and RMS velo	city are related as :	
	(0)	1.1.1.1	(D)	2.2.4.0	
	(A) (C)	1:2:3:4 1:1:1:1	(B) (D)	1:2:4:3 2:2:4:3	
				neir number of moles will be:	
67 .	Four 1 litre flasks are separately filled with the gases $\mathrm{O_2,F_2,CH_4}$ and $\mathrm{CO_2}$, under the same				
	_				

76.	A system with zero-degree of freedom is known as:					
	(A)	Monovarient	(B)	Bivarient		
	(C)	Invarient	(D)	None of these		
77.	A catalyst will increase the rate of a chemical reaction by:					
	(A)	shifting the equilibrium to the right				
	(B)	shifting the equilibrium to the left				
	(C)	increasing the activation energy				
	(D)	lowering the activation energy				
7 8.	The units	of erg, Joule and Calorie are interconv	ertible	e, which of the following is incorrect:		
	(A)	$10^7 \text{ ergs} = 1 \text{ Joule}$	(B)	4.184 J = 1 Cal		
	(C)	1 Joule = 0.2390 Cal	(D)	1 erg = 4.184 Cal		
79.	One mole of an ideal gas at 300 K is expanded isothermally from 1 litre volume to 10 litre volume. ΔE for the process is ————. (R = 2 Cal K ⁻¹ mol ⁻¹):					
	(A)	300 cal	(B)	600 cal		
	(C)	1200 cal	(D)	0 cal		
80.	The equation $\frac{dp}{dT} = \frac{\Delta H}{T(V_2 - V_1)}$ is called:					
	(A)	Gibb's Helmholtz equation	(B)	Clapeyron equation		
	(C)	Kirchoff's equation	(D)	None of these		
81.	A process	is in the equilibrium state when:				
	(A)	$\Delta G = 0$	(B)	$\Delta G > 0$		
	(C)	$\Delta G < 0$	(D)	None of these		
82.	The efficie	ency of a heat engine operating betwee	n 400	K and 300 K is :		
	(A)	1.0	(B)	0.75		
	(C)	0.50	(D)	0.25		
83.	In a proce	ess $\Delta H = 100 \text{KJ}$ and $\Delta S = 100 \text{J/K}$ at	400 K.	The value of ΔG will be:		
	(A)	0	(B)	100 KJ		
	(C)	60 KJ	(D)	50 KJ		
84.		life for a first order reaction is 2768 yes, what was the initial concentration?	ears. If	f the concentration after 11072 years is		
	(A)	0.0690 M	(B)	0.345 M		
	(C)	0.173 M	(D)	1.000 M		

85 .	For a certain reaction, a plot of $\ln[A]$ versus t gives a straight line with a slope of -1.46 s ⁻¹ . Then the order of the reaction in A is:					
	(A)	0	(B)	1		
	(C)	2	(D)	3		
	(0)	2	(D)			
86.		ction $A \to B$, the activation e KJ/mol. What is the E_a for the		125 KJ/mol and the heat of reaction, on in KJ/mol?		
	(A)	75 KJ/mol	(B)	–75 KJ/mol		
	(C)	125 KJ/mol	(D)	175 KJ/mol		
87.	The heat	of adsorption in physical adsorp	otion lies in th	e range :		
	(A)	$1-10~\mathrm{KJ/mol}$	(B)	10-400 KJ/mol		
	(C)	40 – 100 KJ/mol	(D)	40-400 KJ/mol		
88.	0.5 Normal solution of a salt placed between two platinum electrodes, 20 cm apart and of area of cross-section 4.0 sq.cm has a resistance of 25 ohms. Calculate the equivalent conductance of the solution:					
	(A)	$200~\mathrm{ohm^{-1}~cm^2~eqvt^{-1}}$	(B)	$250~\mathrm{ohm^{-1}~cm^2~eqvt^{-1}}$		
	(C)	$400~\mathrm{ohm^{-1}~cm^2~eqvt^{-1}}$	(D)	$500~\mathrm{ohm^{-1}~cm^2~eqvt^{-1}}$		
89.	30% of 2^{nd} order reaction is completed in 15 minutes. Calculate the time for 60% completion :					
	(A)	60 minutes	(B)	52.5 minutes		
	(C)	30 minutes	(D)	32.5 minutes		
90.	A certain current liberated 1.008 g of hydrogen in 2 hours. How many grams of copper can be deposited by the same current flowing for the same time in $CuSO_4$ solution (atomic mass of $Cu = 63.5$):					
	(A)	31.75 g	(B)	63.5 g		
	(C)	127.0 g	(D)	15.875 g		
91.	The specific conductance of a 0.01 M solution of KCl is 1.4×10^{-3} ohm ⁻¹ cm ⁻¹ at 298 K. Its molar conductance is :					
	(A)	$0.14~\mathrm{ohm^{-1}~cm^2~mol^{-1}}$	(B)	$1.4~\mathrm{ohm^{-1}~cm^2~mol^{-1}}$		
	(C)	$14.0~\mathrm{ohm^{-1}~cm^2~mol^{-1}}$	(D)	$140~{ m ohm^{-1}~cm^2~mol^{-1}}$		
92.	The equivalent conductance at 18°C of a normal solution of KCl is 98.2 and for infinite dilution at the same temperature is 131. Calculate the degree of dissociation of KCl at this dilution:					
	(A)	0.1	(B)	0.2		
	(C)	0.5	(D)	0.75		
Α			13	043/2022		

93. pH of an aqueous solution of weak acid and strong base is given by the relation :

(A)
$$pH = 7 + \frac{1}{2}pKa + \frac{1}{2}logC$$

(B)
$$pH = 7 + \frac{1}{2}pKa - \frac{1}{2}logC$$

(C)
$$pH = 7 - \frac{1}{2}pKa + \frac{1}{2}logC$$

(D)
$$pH = 7 - \frac{1}{2}pKa - \frac{1}{2}logC$$

94. The heat of neutralisation of all strong acid and strong base is:

(A) equal to zero

(B) nearly the same

(C) not fixed

(D) varies from acid to acid

95. Which among the following is not microwave active?

(A) HCl

(B) H₂

(C) HBr

(D) CO

96. The NMR active molecule is :

(A) ${}_{6}C^{12}$

(B) ₆C¹³

(C) ${}_{8}O^{16}$

(D) $_{2}$ He 4

97. The magnetic moment of a molecule is 1.732 magnetons. The number of unpaired electrons is:

(A) 0

(B) 1

(C) 2

(D) 3

98. $n \to \sigma^*$ transition occurs in :

(A) alkanes

(B) alkenes

(C) halogen compounds

(D) carbonyl compounds

99. Specific selection rule for rotational spectrum is:

(A) $\Delta V = \pm 1$

(B) $\Delta J = \pm 1$

(C) $\Delta V = \pm 1, \pm 2$

(D) $\Delta J = \pm 1, \pm 2$

100. The formula used for the determination of relative viscosity by Ostwald's method is:

(A) $\frac{y_1}{y_2} = \frac{d_1 t_1}{d_2 t_2}$

(B) $\frac{y_1}{y_2} = \frac{d_1 t_2}{d_2 t_1}$

(C) $\frac{y_1}{y_2} = \frac{d_2 t_1}{d_1 t_2}$

(D) $\frac{y_1}{y_2} = \frac{d_2 t_2}{d_1 t_1}$

SPACE FOR ROUGH WORK

SPACE FOR ROUGH WORK