Time: 75 Minutes

Ouestion Booklet Alpha Code

Total Number of Questions: 100

218/2014

Maximum Marks: 100

INSTRUCTIONS TO CANDIDATES

- The question paper will be given in the form of a Question Booklet. There will be four versions of question booklets with question booklet alpha code viz. A, B, C & D.
- The Question Booklet Alpha Code will be printed on the top left margin of the facing sheet of the 2. question booklet.
- The Question Booklet Alpha Code allotted to you will be noted in your seating position in the 3. Examination Hall.
- If you get a question booklet where the alpha code does not match to the allotted alpha code in the seating position, please draw the attention of the Invigilator IMMEDIATELY.
- The Question Booklet Serial Number is printed on the top right margin of the facing sheet. If your 5. question booklet is un-numbered, please get it replaced by new question booklet with same alpha code.
- The question booklet will be sealed at the middle of the right margin. Candidate should not open the 6. question booklet, until the indication is given to start answering.
- Immediately after the commencement of the examination, the candidate should check that the question booklet supplied to him contains all the 100 questions in serial order. The question booklet does not have unprinted or torn or missing pages and if so he/she should bring it to the notice of the Invigilator and get it replaced by a complete booklet with same alpha code. This is most important.
- A blank page of paper is attached to the question booklet. This may be used for rough work. 8.
- Please read carefully all the instructions on the reverse of the Answer Sheet before 9. marking your answers.
- 10. Each question is provided with four choices (A), (B), (C) and (D) having one correct answer. Choose the correct answer and darken the bubble corresponding to the question number using Blue or Black Ball Point Pen in the OMR Answer Sheet.
- 11. Each correct answer carries 1 mark and for each wrong answer 1/3 mark will be deducted. No negative mark for unattended questions,
- No candidate will be allowed to leave the examination hall till the end of the session and without handing over his/her Answer Sheet to the Invigilator. Candidates should ensure that the Invigilator has verified all the entries in the Register Number Coding Sheet and that the Invigilator has affixed his/her signature in the space provided.
- 13. Strict compliance of instructions is essential. Any malpractice or attempt to commit any kind of malpractice in the Examination will result in the disqualification of the candidate.

1.	In a	an RLC series circuit the impedance	at reson	ance is		
	(A)	Inductive	(B)	Resistive		
	(C)	Capacitive	(D)) No impedance		
2.	In a	step up transformer, the frequency	of secon	dary voltage is		
	(A)	Zero	(B)	Greater than that of primary		
	(C)	Equal to that of primary	(D)	Less than that of primary		
3.	Wh	en two resistor R ₁ and R ₂ connected	l in paral	lel the total resistance R _T will be		
	(A)	$R_{T} = R_{1} + R_{2}$	(B)	$R_{T} = \frac{R_1 + R_2}{R_1 \times R_2}$		
	(C)	$R_{T} = \frac{1}{R_{1}} + \frac{1}{R_{2}}$	(D)	$R_{T} = \frac{R_1 \times R_2}{R_1 + R_2}$		
4.	The	SI unit of flux density is				
	(A)	Maxwell				
	(C)	Weber	(D)	Gauss		
5.	The	impurity added to make P type sem	iconduct	or is		
	(A)	Arsenic	(B)	Antimony		
	(C)	Boron	(D)	Silicon		
6.	When positive probe of ohmmeter is connected to anode and negative probe to the cathode of a diode, the meter indicates					
	(A)	Low resistance	(B)	No resistance		
	(C)	High resistance	(D)	None of the above		
7.	The o	de output voltage for a bridge rectif		out filter when 24 V _{rms} is applied as input		
	(A)	10.8 V	(B)	24 V		
	(C)	21.6 V	(D)	7.64 V		
8.	In a v	oltage regulator using Zener diode,	the Zene	er is connected as		
	(A)	Parallel with load, reverse biased	(B)	Parallel with load, forward biased		
	(C)	Series with load, forward biased	(D)	Series with load, reverse biased		
218/	2014		2	THE RESERVE AND ADDRESS.		

9.	When		ohmn	neter, the transistor junction is forward
	(A)	+ probe at collector, - probe at base	(B)	- probe at emitter, + probe at collector
	(C)	- probe at base, + probe at collector	(D)	+ probe at base, - probe at emitter
10.	A tw	o stage RC coupled amplifier have sta	ge gair	ns of 30 and 40. The overall gain is
	(A)	70	(B)	1200
	(C)	120	(D)	12000
11.	The	astable multivibrator		11 × 11 × 12
	(A)	have two stable states	(B)	have a stable state
.4		is free running	(D)	flip flop circuit
		2!		60 To 100
12.		time period of output waveform of an		
	(A)	T = 0.69 RC	(B)	$T = 1.38 R_1 C_1 + 1.38 R_2 C_2$
	(C)	T = RC	(D)	T = 1.38 RC
13.		noise generated by random variation trodes of an Amplifying device is	ons in	the arrival of electrons or holes at the
	(A)	Thermal agitation noise	(B)	Shot noise
	(C)	Transit time noise	(D)	Resistance noise
14.	Seco	ondary cell has the characteristic of		
		Not rechargeable	(B)	Dry cell
	(C)	Rechargeability	(D)	Both (A) and (B)
15.	In a	bridge rectifier the PIV across a non-o	conduc	ting diode equals
10.	(A)	twice the peak value of ac input		
	(B)	four times the peak value of ac input	t	
	(C)	half the peak value of ac input		
	(D)	the peak value of ac input		
	(-)			
16.	The	number of PN junctions in a JFET is		
	(A)	1	(B)	
	(C)	3	(D)	no junctions
A			3	218/2014

17.	The	SCR can be switched off by		
	(A)	Low current drop out		
	(B)	Applying forward break over voltage		
	(C)	Applying valley voltage		
	(D)	Applying negative trigger at its gate		
18.	The	open by pass capacitor in a CE amplifi	er cau	ises
	(A)	Increase in voltage gain	(B)	Decrease in voltage gain
*	(C)	Introduces positive feedback	(D)	Gain remains unchanged
19.		ee resistors each with a value of 0.06 stance is	9 M	ohm are connected in parallel. The total
	(A)	23 ohm	(B)	230 K ohm
	(C)	0.23 M ohm	(D)	23 K ohm
20.	The	power factor is defined as		
	(A)	Peak power times 0.707		
	(B)	Cosine of the phase angle between tru	ie pov	ver and apparent power
	(C)	Ratio of true power to apparent power	r	
	(D)	Sine of the phase angle difference bet	ween	voltage and current
21.	The	reciprocal of reactance is		
	(A)	Reluctance	(B)	Susceptance
	(C)	Admittance	(D)	Impedance
22.	In os	scillators the Barkhausen criterion for o	scilla	tion is given by the condition
	(A)	$A\beta = 1$	(B)	$A\beta = 0$
	(C)	$A\beta \ge 1$	(D)	$A\beta < 1$
23.	Fold	back current limiting has the following	g adva	intage over simple current limiting:
	(A)	Simple construction		
	(B)	Less power dissipation of series trans	istor	
	(C)	Short circuit current > maximum load	curre	ent
	(D)	None of the above		

24.	NPN	transistors are preferred to PNP trans	istors b	ecause of	
		Easy use in +ve supply rail			
	(B)	Higher switching speed			
		A wide range of operating temperatu	ire		
	4	the reasons mentioned in (A) and (B)			
25.	The L	ED which emits invisible light is			
	(A)	Bicolour LED	(B)	LASER LED	
	(C)	Tricolour LED	(D)	Infra red LED	
26.	The c	copper from copper clad boards is ren	noved b	by using	
	(A)	Thinner	(B)	Etchant	
	(C)	Eraser	(D)	Remover	
27.	The	voltage gain of an RC coupled amplit	fier is 1	00. What is the gain in dB?	
	(A)		(B)		
	(C)	30	(D)	10	
28.	The	IC number for quad 2 input NOR ga	te is		
	(A)	7400	(B)	7401	
	(C)	7402	(D)	7404	
29.	Whe	en JK flip flops are used to make freq	uency c	counters, the condition used is	
		J = K = 1	(B)	J = 0, K = 1	
	(1) (2)	J = K = 0	(D)	J=1, K=0	
30.	The	number of flip flops required to cons	struct a	mod 10 counter is	
	(A)		(B)		
	(C)	3	(D)	10	
31.	The	simplification of Boolean expression	1 A + Ā	Bis	
		AB	(B)	$\bar{A} + B$	
		ĀB	(D)	A + B	
32.	The	number of PN junctions in a DE MC	OSFET	is	
-	(A)		(B)		
	(C)		(D)) 2	
	(-)				

33.	The	opto coupler is most commonly	y called as				
	(A)	Photo detector	(B)	Photo transistor			
	(C)	Opto isolator	(D)	Darlington transistor			
34.	The	function of RC snubber circuit	in lamp dimn	ner is			
	(A)	to slow down the rate of rise of	of voltage app	lied across the triac			
	(B)	to provide smooth phase cont	rol				
	(C)	to provide variable firing ang	le to triac				
	(D)	to provide effective grounding	g				
35.	Sem	iconductor device BPW 34 is a					
	(A)	photo diode	(B)	photo and varacter diode			
	(C)	varactor diode	(D)	photo voltaic cell			
36.	For	a 20" picture tube, the filament	voltage is	ninco II sa in diappymia			
	(A)	3V de	(B)	5V de			
	(C)	6.3V dc	(D)	6.3V ac			
37.	In a	TV Receiver, the linearity coil i	is connected in	P Togin K book the soundings			
	(A)	Parallel with horz deflection c					
	(B)	Series with horz deflection co	il				
	(C)	Series with horz driver transfo	rmer				
	(D)	Parallel with LOT					
38.	Bifila	ar IF coils has the following adv	vantage over o	other IF coils			
	(A)	maximum energy transfer from					
	(B)	small in size.	Bi				
	(C)	maximum coupling between primary and secondary winding.					
	(D)	ferrite iron core is not used as	former for win	nding.			
39.	The I	balun transformer consists of to capacitors is	wo small 470	pF capacitors inside it. The	purpos	se of	
	(A)	to block dc and permit ac					
	(B)	facilitates static charging	TE MOSI ET				
	(C)	effective coupling of ac signal					
	(D)	to prevent damage due to light	ning				
218/2	2014		6				

40.	The	luminance signal is delayed by approx	ximatei	y
	(A)	100 μS	(B)	60 μS
	(C)	120 µS	(D)	30 μS
41.	The	function of using a squelch circuit in	a TV re	eceiver is
3/27	(A)	to boost the higher frequencies.		
	(B)	to improve the frequency response of	of ampl	ifiers.
	(C)			
	(D)	to improve the S/N ratio.		W , J 6
42.	The	sensitivity of an oscilloscope depends	son	
	(A)	vertical amplifier	(B)	sweep oscillator
	(C)	horz amplifier	(D)	CRT
43.	The	impedance of Yagi - Uda antenna is		
	(A)	100 ohm	(B)	300 ohm
	(C)	200 ohm	(D)	75 ohm
44.	Whi	ch of the following gate has high outp	out whe	n its inputs are different?
	(A)	NAND gate	(B)	EX NOR gate
	(C)	NOR gate	(D)	EX OR gate
45.	In R	S flip flop using NAND gates, the rac	e cond	ition occurs when its inputs are
	(A)	0, 0	(B)	0, 1
	(C)	1, 0	(D)	1,1
46.	The	BCD equivalent of decimal 38 is		
40.	(A)	10000011	(B)	00111000
	(C)	00111001	(D)	00100110
47.	The	voltage across the diode in a half way	e recti	fier when it is non-conducting is
80.00	(A)	zero		is constant at 0.3 V
	(C)	0.7 V	4.00	same as the input voltage
48.	PN i	unctions are called bipolar devices be	ecause	
	(A)	they contain both P and N layers		
	(B)	conduction is due to both hole and e	electron	currents
	(C)			7. (2.20)
		all of the above		

49.	AM	broadcast band is		
	(A)	1605 KHz to 30 MHz	(B)	10 to 30 KHz
	(C)	535 KHz to 1605 KHz	(D)	88 MHz to 108 MHz
50.	In A	M radio, the bandwidth of the IFTs use	ed is	
	(A)	455 KHz	(B)	10.7 MHz
	(C)	440 KHz	(D)	20 KHz
				The application in the visible and it
51.	In ra	dio receivers, the AGC bias voltage co	ontrols	the gain of
	(A)	RF amplifier	(B)	IF amplifier
	(C)	AF amplifier	(D)	All of the above
		(D) 75 out		min 1005-(2)-
52.		colour sub carrier frequency of PAL sy		
	(A)	4.35 MHz	(B)	4.49 MHz
	(C)	4.36 MHz	(D)	4.43 MHz
53.	In T	V the DC component of video signal is	restor	red by using
	(A)	Clamping circuit	(B)	RC circuit
	(C)	Clipping circuit	(D)	LC circuit
54.	The	bandwidth of luminance signal in the c	olour	
	(A)	2 MHz	(B)	4 MHz
	(C)	3 MHz	(D)	3.5 MHz
55.	The	type of polarization used for TV transn	nission	n is
	(A)	vertical	(B)	elliptical
	(C)	horizontal	(D)	circular

56.	BF24	45B has a maximum drain source	voltage of			
	(A)	18 V	(B)	24 V		
	(C)	30 V	(D)	36 V		
57.	The	unit decibel is used to measure				
	(A)	power	(B)	voltage		
	(C)	power level	(D)	current		
58.	With	feedback, the closed loop gain of	f an amplif	ier signifies		
	(A)	the gain when its output terminal	ls are close	ed		
	(B)	the gain when no feedback is app	plied			
	(C)	when the feedback factor exceed	ls unity			
	(D)	the gain when the feedback is ap	plied			
59.		gain bandwidth product of an amp	plifier is 4	MHz. Its close	ed loop gain is 4	0. The new
	(A)	160 MHz	(B)	100 KHz		
	(C)	10 MHz	(D)	20 KHz		
60.	Тор	produce sustained oscillations by a	n electroni	e oscillator		
	(A)	feedback factor should be unity				
	(B)	feedback should be negative				
	(C)	phase shift should be 0°				
	(D)	both (A) and (C)				
61.	The	purpose of using de-emphasis circ	cuit in FM	receiver is		*
01.	(A)	making demodulation easy				
	(B)	reducing high frequency noise				
	(C)	increasing the amplitude of high	ner modula	ting frequencie	es	
	(D)	reducing the amplitude of high				
A	1		9			218/2014

		ien of the following is an indire	et way of gen	crating rivi .
	(A)	Reactance FET modulator		
	(B)	Varactor diode modulator		
	(C)	Armstrong modulator		
*	(D)	Reactance bipolar transistor i	modulator	
63.	Ant	enna top loading increases		tweet tie
	(A)	handwidth	(B)	effective height
	(C)	beam width		input capacitance
				e papalbadi na malifemba
64.	One	of the following is an applicati	ion of RC circ	uit:
	(A)	Delay circuit	(B)	Rectifier
	(C)	Charger circuit	(D)	Oscillator
65.	Diss	ipation factor of a capacitor car	n be expressed	l as
	(A)	Quality factor	(B)	Reactance Resistance
	(C)	Reactance (Xc)	(D)	Reactance Quality factor
66.	One	of the following is not used for	etching:	
	(A)	Ferric chloride	(B)	Alkaline ammonia
	(C)	Carbon tetra chloride	(D)	Cupric chloride
67.	Whie	ch LED has the lowest forward	voltage drop	var a mora latterach qui fi
	(A)	Red	(B)	Green
	(C)	Orange	(D)	Yellow

68.	The	reverse breakdown in zener diode o	occurs due	e to
	(A)	hall effect	(B)	avalanche effect
	(C)	breakdown effect	(D)	induction effect
69.		of the following diode can store		in their capacitance and then generate
	(A)	Varactor diode	(B)	Schottky diode
	(C)	PIN diode	(D)	Step recovery diode
70.		ch stage provides most of the ga	ain and s	ensitivity for a super heterodyne radio
	(A)	IF amplifier	(B)	AF amplifier
	(C)	RF amplifier	(D)	Mixer
71.	Whi	ch of the following can demodulate	SSB?	
	(A)	Ratio detector	(B)	Phase discriminator
	(C)	Product demodulator	(D)	Both (A) and (B)
72.	The	third letter in transistor type number	r indicate	S
-	(A)	specific field of application	(B)	temperature
	(C)	voltage and power rating	(D)	material of the device
73.	The	overall current gain of darlington tr	ansistor is	s equal to
	(A)	$\frac{\beta_1}{\beta_2}$	(B)	$\frac{\beta_2}{\beta_1}$

(C) $\beta_1\beta_2$

(D) $\beta_1 + \beta_2$

	(A)	+9 V	(B)	+ 79 V
	(C)	-79 V	(D)	-9 V
75.	A di	scharged battery should not be tested l	oy usir	ng
	(A)	a battery hydrometer	(B)	a high rate discharge tester
	(C)	a voltmeter	(D)	all of the above
76.	Whi	ch device converts one form of energy	into a	nother?
	(A)	Transducer	(B)	Converter
	(C)	Transmitter	(D)	Inverter
77.	The	output waveform of a relaxation oscill	ator is	e Manufill (A)
	(A)	Rectangular	(B)	Square
	(C)	Sawtooth	(D)	Above mentioned waves
78.	At w	hat frequency range, do Marconi ante	nna is	used ?
	(A)	VHF	(B)	HF WHITE THE THE THE THE THE THE THE THE THE T
	(C)	MF	(D)	UHF
79.		ch of the following antenna can be er gain of other antennas?	used a	s a reference antenna for measuring the
	(A)	Half wave dipole	(B)	Yagi antenna
	(C)	Rhombic antenna	(D)	Parabolic antenna
80.		00 watt carrier is modulated to a dulated Wave?	epth o	of 80%. What is the total power in the
	(A)	580 W	(B)	410 W
	(C)	660 W	(D)	606.66 W

12

74. The output voltage of 7909 IC is

01.	Jatin	ikulilili was written by		
	(A)	Chattampi Swamikal	(B)	Pandit Karuppan
	(C)	Vagbhatanandan	(D)	Vaikunda Swami
	34			
82.	The	environmental activist associated with	the pr	otection of mangrove forests is
	(A)	John C. Jacob	(B)	Sundarlal Bahuguna
	(C)	Kallen Pokkudan	(D)	Vandana Siva
83.	Chie	f Election Commissioner of India is		
	(A)	V.S. Sampath	(B)	B.B. Tandon
	(C)	V.S. Ramadevi	(D)	T.N. Seshan
84.	Meta	al known as "Quick-Silver" is		
	(A)	Bromine	(B)	Gallium
	(C)	Bismuth	(D)	Mercury
85.	The	slogan "Chuck the American Model in	nto the	American Sea" is related to
	(A)	Nivarthana Agitation	(B)	Punnapra-Vayalar Uprising
	(C)	Moplah Rebellion	(D)	Kayyur Riot
86.	The	novel that won 'Odakkuzhal Award'	in 201	3 is
	(A)	Marupiravi	(B)	Avakasikal
	(C)	Aarachaar	(D)	Rain Deer
87.	Kur	dara Proclamation was on		
	(A)	January 23, 1809	(B)	January 1, 1809
	(C)	January 11, 1809	(D)	January 30, 1809

13

88.	The National Pledge of India was composed by					
	(A)	Pydimarri Venkata Subba Rao	(B)	Rabindranath Tagore		
	(C)	Bankim Chandra Chatterji	(D)	Pingali Venkayya		
89.	The term "Bishop" is related to					
	(A)	Bridge	(B)	Cricket		
	(C)	Football uses nucleosty	(D)	Chess		
90.	'Madiba' is the pet name of					
	(A)	Gandhiji	(B)	Abraham Lincoln		
	(C)		(D)	Nelson Mandela		
91.	'Agnisakshi' written by Lalithambika Antharjanam belongs to the category of					
	(A)	Drama	(B)	Poetry		
	(C)	Novel	(D)	Short Story		
92.	Salim Ali is related to					
	(A)	Numismatics	(B)	Philately		
	(C)	Graphology	(D)	Ornithology		
93.	Mars orbiter launched into Earth's orbit on 5 th November 2013 by Indian Space Research Organisation is					
	(A)	Mangalyaan	(B)	Jugnu		
	(C)	HAMSAT MARKET AND	(D)	Chandrayaan		
94.	The first Legislative Council in an Indian State was					
	(A)	Sri Chitra State Council				
	(B)	Srimulam Popular Assembly		Kunden Programmion was our		
	(C)	Cochin Legislative Council				
	(D)	Travancore Legislative Assembly				

95.	The recipients of 'Bharat Ratna Award' in 2013 are					
	(A)	Lata Mangeshkar and Bismilla Khan				
	(B)	M.S. Subbulakshmi and Chidambaran	1			
	(C)	C.N.R. Rao and Sachin Tendulkar				
	(D)	Ravi Sankar and Amartya Sen				
96.	The Article in the Indian Constitution that gives special status to Jammu and Kashmir is					
	(A)	Article – 356	(B)	Article – 370		
	(C)	Article – 352	(D)	Article – 360		
97.	The	village in India known for the usage of	Sansk	krit for day-to-day communication is		
	(A)	Mattur in Karnataka	(B)	Udumbannur in Kerala		
	(C)	Bahapur in Delhi	(D)	Anand in Gujarat		
98.	'Sac	lhujanaparipalanayogam" is related to				
	(A)	Sreenarayana Guru	(B)	K. Kelappan		
	(C)	Sahodaran Ayyappan	(D)	Ayyankali		
99.	The theatre performed in Kerala, recognised by UNESCO as a masterpiece of Oral and Intangible of Humanity is					
	(A)	Ottanthullal	(B)	Theyyam		
	(C)	Koodiyattam	(D)	Padayani		
100.	'Me	etro railman of India' is				
	(A)	E.M.S. Namboothiripad	(B)	J.R.D. Tata		
	(C)	M.K. Sreedharan	(D)	E. Sreedharan		

Space For Rough Work

218/2014 A