## 065/2018

Question Booklet Alpha Code



Question Booklet Serial Number

| Total Number of Questions : 100 | Time: 75 Minutes |
|---------------------------------|------------------|
| Maximum Marks: 100              |                  |

- 1. The question paper will be given in the form of a Question Booklet. There will be four versions of question booklets with question booklet alpha code viz. **A**, **B**, **C** & **D**.
- 2. The Question Booklet Alpha Code will be printed on the top left margin of the facing sheet of the question booklet.
- 3. The Question Booklet Alpha Code allotted to you will be noted in your seating position in the Examination Hall.
- 4. If you get a question booklet where the alpha code does not match to the allotted alpha code in the seating position, please draw the attention of the Invigilator IMMEDIATELY.
- 5. The Question Booklet Serial Number is printed on the top right margin of the facing sheet. If your question booklet is un-numbered, please get it replaced by new question booklet with same alpha code.
- 6. The question booklet will be sealed at the middle of the right margin. Candidate should not open the question booklet, until the indication is given to start answering.
- 7. Immediately after the commencement of the examination, the candidate should check that the question booklet supplied to him contains all the 100 questions in serial order. The question booklet does not have unprinted or torn or missing pages and if so he/she should bring it to the notice of the Invigilator and get it replaced by a complete booklet with same alpha code. This is most important.
- 8. A blank sheet of paper is attached to the question booklet. This may be used for rough work.
- 9. Please read carefully all the instructions on the reverse of the Answer Sheet before marking your answers.
- 10. Each question is provided with four choices (A), (B), (C) and (D) having one correct answer. Choose the correct answer and darken the bubble corresponding to the question number using Blue or Black Ball Point Pen in the OMR Answer Sheet.
- 11. Each correct answer carries 1 mark and for each wrong answer 1/3 mark will be deducted. No negative mark for unattended questions.
- 12. No candidate will be allowed to leave the examination hall till the end of the session and without handing over his/her Answer Sheet to the Invigilator. Candidates should ensure that the Invigilator has verified all the entries in the Register Number Coding Sheet and that the Invigilator has affixed his/her signature in the space provided.
- 13. Strict compliance of instructions is essential. Any malpractice or attempt to commit any kind of malpractice in the Examination will result in the disqualification of the candidate.

## 065/2018

1. Total energy density due to electric and magnetic fields is given by:

(A) 
$$\frac{1}{2} \left( \varepsilon E^2 + \mu H^2 \right)$$

(B) 
$$\frac{1}{2} (\epsilon E + \mu H)$$

(C) 
$$\left(\varepsilon E^2 + \mu B^2\right)$$

(D) 
$$\frac{1}{2} \left( \mu E^2 + \varepsilon H^2 \right)$$

2. Poynting vector is given by:

(A) 
$$\mu_0(ExH)$$

(B) 
$$\varepsilon_0(ExB)$$

(C) 
$$(ExH)$$

(D) 
$$(Ex\mu B)$$

3. Intrinsic impedance of free space is:

(A) 
$$\frac{\mu_0}{\epsilon_0}$$

(B) 
$$\sqrt{\frac{\mu_0}{\epsilon_0}}$$
 (C)  $\sqrt{\frac{\mu}{\epsilon}}$ 

(C) 
$$\sqrt{\frac{\mu}{\epsilon}}$$

(D) 
$$\sqrt{\frac{\mu_r}{\epsilon_r}}$$

4. The dominant transverse electric wave in a rectangular wave guide is:

If  $n_1$  and  $n_2$  are the refractive indices of the two non-conducting media, the reflection 5. coefficient for normal l incidence at the interface is given by :

(A) 
$$\left(\frac{n_2 - n_1}{n_2 + n_1}\right)^2$$

(B) 
$$\left(\frac{n_2 + n_1}{n_2 - n_1}\right)^2$$

(C) 
$$\frac{4n_1n_2}{n_1 + n_2}$$

(D) 
$$\left(\frac{n_2 - n_1}{n_2 + n_1}\right)$$

6. In the presence of both electric and magnetic fields, the net force on a charge Q moving with velocity "v" is :

(A) 
$$F = EQ(vxB)$$

(B) 
$$F = QE.B$$

(C) 
$$F = Q(B + vxE)$$

(D) 
$$F = Q(E + vxB)$$

7. Enthalpy "H" is mathematically defined as:

(A) 
$$H = U + dQ$$

(B) 
$$H = U - PV$$

(C) 
$$H = U + PV$$

(D) 
$$H = U + TS$$

| 8.                                                                     | Collection of a large number of essentially independent systems having the same temperature T, volume V and same number of identical particles n is known as : |                      |         |               |          |         |                          |               |               |     |
|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------|---------------|----------|---------|--------------------------|---------------|---------------|-----|
|                                                                        | (A)                                                                                                                                                            | Microcanonical       | ensen   | nble          | (B)      | Cano    | onical enser             | nble          |               |     |
|                                                                        | (C)                                                                                                                                                            | Grand canonical      | l ense  | mble          | (D)      | Mac     | rocanonical              | ensemble      |               |     |
| 9.                                                                     | Elect                                                                                                                                                          | rons obey :          |         |               |          |         |                          |               |               |     |
|                                                                        | (A)                                                                                                                                                            | Bose - Einstein S    | Statist | ics           | (B)      | Max     | well - Boltz             | mann Statis   | stics         |     |
|                                                                        | (C)                                                                                                                                                            | Fermi - Dirac St     | atistic | S             | (D)      | All t   | hree Statisti            | CS            |               |     |
| 10.                                                                    | In gi                                                                                                                                                          | and canonical en     | semb]   | le, the comp  | orising  | syste   | ems can :                |               |               |     |
|                                                                        | (A)                                                                                                                                                            | exchange both e      | nergy   | and partic    | les      |         |                          |               |               |     |
|                                                                        | (B)                                                                                                                                                            | exchange only e      | nergy   | 7             |          |         |                          |               |               |     |
|                                                                        | (C)                                                                                                                                                            | exchange particl     | les on  | ly            |          |         |                          |               |               |     |
|                                                                        | (D)                                                                                                                                                            | not exchange pa      | rticle  | s or energy   |          |         |                          |               |               |     |
| 11.                                                                    | Parti                                                                                                                                                          | cles obey Pauli's    | exclus  | sion princip  | le in :  |         |                          |               |               |     |
|                                                                        | (A)                                                                                                                                                            | Bose - Einstein S    | Statist | ni - Dirac St | atistics |         |                          |               |               |     |
|                                                                        | (C)                                                                                                                                                            | Maxwell - Boltz      | mann    | Statistics    | (D)      | all th  | ne three Stat            | tistics       |               |     |
| 12. Lande's "g" factor for the $3^2 P_{3/2}$ level of sodium atom is : |                                                                                                                                                                |                      |         |               |          |         |                          |               |               |     |
|                                                                        | (A)                                                                                                                                                            | 2                    | (B)     | 1/2           |          | (C)     | $\frac{4}{3}$            | (D)           | $\frac{2}{3}$ |     |
| 13.                                                                    | Two                                                                                                                                                            | or more electrons    | s are s | said to be ec | quival   | ent if  | they have :              |               |               |     |
|                                                                        | (A)                                                                                                                                                            | same $l$ and $s$ val | ues     |               | (B)      | same    | e n and m <sub>1</sub> v | values        |               |     |
|                                                                        | (C)                                                                                                                                                            | same n and j val     | lues    |               | (D)      | same    | e n and <i>l</i> val     | lues          |               |     |
| 14.                                                                    | Whi                                                                                                                                                            | ch of the followin   | g will  | give micro    | wave     | specti  | rum ?                    |               |               |     |
|                                                                        | (A)                                                                                                                                                            | CO <sub>2</sub>      | (B)     | $H_2$         |          | (C)     | CS <sub>2</sub>          | (D)           | HC1           |     |
| <b>15.</b>                                                             | The                                                                                                                                                            | pumping scheme       | used    | in solid stat | te lase  | rs is : |                          |               |               |     |
|                                                                        | (A)                                                                                                                                                            | Electrical           | (B)     | Magnetic      |          | (C)     | Optical                  | (D)           | Mechani       | cal |
| 16.                                                                    | Mut                                                                                                                                                            | ual exclusion prin   | -       |               |          | -       | •                        |               |               |     |
|                                                                        | (A)                                                                                                                                                            | IR and Raman a       |         |               | (B)      | ,       |                          |               |               |     |
|                                                                        | (C)                                                                                                                                                            | ESR and Raman        | activ   | rities        | (D)      | Micr    | owave and                | IR activities | 5             |     |
| 065/                                                                   | 2018                                                                                                                                                           |                      |         |               | 4        |         |                          |               |               | A   |

| 17. | Whi                              | ch of the followin                                                                             | g is no                    | ot a proper                 | ty of 1        | aser li | ight ?                             |          |            |             |
|-----|----------------------------------|------------------------------------------------------------------------------------------------|----------------------------|-----------------------------|----------------|---------|------------------------------------|----------|------------|-------------|
|     | (A)                              | Directionality                                                                                 |                            |                             | (B)            | Mor     | nochromaticity                     |          |            |             |
|     | (C)                              | Coherence                                                                                      |                            |                             | (D)            | Dive    | ergence                            |          |            |             |
| 18. |                                  | typical waveleng<br>on of :                                                                    | ths en                     | nitted or a                 | bsorbe         | ed in I | Mossbauer spec                     | ctroscop | ic studie  | s is in the |
|     | (A)                              | gamma rays                                                                                     | (B)                        | X-rays                      |                | (C)     | microwave                          | (D)      | visible    |             |
| 19. | Whe                              | n an electron jum<br>Second line of P                                                          | -                          |                             | rth orb<br>(B) |         | he second orbit<br>and line of Lym | ·        |            |             |
|     | (C)                              | Second line of B                                                                               |                            |                             | (D)            |         | and line of Pasc                   |          |            |             |
| 20. | Coop<br>(A)<br>(B)<br>(C)<br>(D) | per pairs are form<br>electron-phonon<br>electron-proton<br>proton-phonon-<br>electron-hole in | n-elect<br>intera<br>proto | ron interaction             |                |         |                                    |          |            |             |
| 21. | The (A)                          | reciprocal lattice<br>an fcc lattice                                                           | to an i                    | fcc lattice i<br>a hcp latt |                | (C)     | a sc lattice                       | (D)      | a bcc la   | ıttice      |
| 22. | The                              | region in k space                                                                              | at k =                     | $=\pm\frac{\pi}{a}$ is k    | nown           | as:     |                                    |          |            |             |
|     | (A)                              | First Brillouine                                                                               | zone                       |                             | (B)            | First   | t energy gap                       |          |            |             |
|     | (C)                              | Second Brillouir                                                                               | ne zon                     | e                           | (D)            | Ban     | d                                  |          |            |             |
| 23. | If the                           | e applied externa                                                                              | l field                    | is increase                 | d bevo         | and th  | ne critical field                  | the mate | erial beco | mes ·       |
|     | (A)                              | a superconduct                                                                                 |                            | 15 Increase                 | (B)            |         | nal conductor                      | the mark | criar occo | illes .     |
|     | (C)                              | insulator                                                                                      |                            |                             | (D)            |         | iconductor                         |          |            |             |
| 24. | Acco                             | ording to free elec                                                                            | etron n                    | nodel, the                  | averag         | ge K.E  | . of electron at                   | tempera  | ture T is  | :           |
|     | (A)                              | $\frac{1}{2}$ kT                                                                               | (B)                        | $\frac{3}{2}$ kT            |                | (C)     | kT                                 | (D)      | Zero       |             |
| 25. | Whi                              | ch of the followin                                                                             | ıg is <b>n</b> e           | ot a propei                 | rty of 1       | nuclea  | ar forces ?                        |          |            |             |
|     | (A)                              | charge indepen                                                                                 | dent                       |                             | (B)            | stro    | ng attractive fo                   | rce      |            |             |
|     | (C)                              | long range force                                                                               | 9                          |                             | (D)            | satu    | rated force                        |          |            |             |
| A   |                                  |                                                                                                |                            |                             | 5              |         |                                    |          |            | 065/2018    |

{P.T.O.}

| 26. | Nuc  | Nuclear radius R and the atomic mass number A are connected by the relation: |        |                     |         |         |                        |              |      |  |  |
|-----|------|------------------------------------------------------------------------------|--------|---------------------|---------|---------|------------------------|--------------|------|--|--|
|     |      | $R = R_0 A^{\frac{1}{3}}$                                                    |        |                     |         | R = 1   |                        |              |      |  |  |
|     | (C)  | $R = R_0 A^{\frac{2}{3}}$                                                    |        |                     | (D)     | R=      | $R_0 A^{-\frac{1}{3}}$ |              |      |  |  |
| 27. | Pari | ty is violated in :                                                          |        |                     |         |         |                        |              |      |  |  |
|     | (A)  | α-decay                                                                      |        |                     | (B)     | Fusi    | on                     |              |      |  |  |
|     | (C)  | Gamma emissio                                                                | n      |                     | (D)     | β-d€    | ecay                   |              |      |  |  |
| 28. | Ener | gy generation in                                                             | stars  | is through :        |         |         |                        |              |      |  |  |
|     | (A)  | Nuclear fission                                                              |        |                     | (B)     | Stim    | ulated emissi          | on           |      |  |  |
|     | (C)  | Nuclear fusion                                                               |        |                     | (D)     | Thei    | rmoelectric pi         | cocess       |      |  |  |
| 29. | Qua  | rk combinations                                                              | of pro | oton and neu        | ıtron   | respec  | ctively are :          |              |      |  |  |
|     | (A)  | uds and uss                                                                  |        |                     | (B)     | uss a   | and uds                |              |      |  |  |
|     | (C)  | uud and udd                                                                  |        |                     | (D)     | uud     | and <i>uds</i>         |              |      |  |  |
| 30. | Whi  | ch of the following is <b>not</b> a baryon ?                                 |        |                     |         |         |                        |              |      |  |  |
|     | (A)  | Neutron                                                                      | (B)    | Sigma               |         | (C)     | Proton                 | (D)          | Muon |  |  |
| 31. | Phas | se difference betw                                                           | zeen i | nput and ou         | itput s | signals | s of a CE amp          | olifier is : |      |  |  |
|     | (A)  | 180°                                                                         | (B)    | 90°                 |         | (C)     | 45°                    | (D)          | 0°   |  |  |
| 32. | The  | ripple factor for a                                                          | a half | wave rectifi        | er is : |         |                        |              |      |  |  |
|     | (A)  | 0.406                                                                        | (B)    | 0.48                |         | (C)     | 0.812                  | (D)          | 1.21 |  |  |
| 33. | Univ | versal building bl                                                           | ocks a | nre:                |         |         |                        |              |      |  |  |
|     | (A)  | AND and OR g                                                                 |        |                     | (B)     | NAI     | ND and OR g            | ates         |      |  |  |
|     | (C)  | NAND and NC                                                                  | R gat  | es                  | (D)     | ANI     | O and NOT g            | ates         |      |  |  |
| 34. | Whi  | ch of the followir                                                           | ng sta | tements is <b>w</b> | rong    | ?       |                        |              |      |  |  |
|     | (A)  | LED is a forwar                                                              | O      |                     | U       |         |                        |              |      |  |  |
|     | (B)  | Photodiode is re                                                             |        | ,                   |         | on      |                        |              |      |  |  |
|     | (C)  | Solar cell is a Pl                                                           |        | •                   | -       |         |                        |              |      |  |  |
|     | (D)  | LED is a reverse                                                             | ,      |                     | ion     |         |                        |              |      |  |  |
|     |      |                                                                              |        |                     |         |         |                        |              |      |  |  |

|     | (A)  | Capacitor                              | (B)               | Resistor               | (C)     | Zener diode          | (D)     | Transistor           |
|-----|------|----------------------------------------|-------------------|------------------------|---------|----------------------|---------|----------------------|
| 36. | Ham  | niltonian is given                     | by:               |                        |         |                      |         |                      |
|     | (A)  | T - V                                  | (B)               | T + V                  | (C)     | T/V                  | (D)     | TV                   |
| 37. | Rela | tion between ener                      | gy (E             | ) and momentum         | (P) o   | f a particle of mas  | ss M i  | s:                   |
|     | (A)  | $E = \frac{P}{M}$                      | (B)               | $E = \frac{2P}{M}$     | (C)     | $E = \frac{P^2}{2M}$ | (D)     | $E = \frac{P^2}{M}$  |
| 38. | Whi  | ch of the followin                     | g stat            | ements is <b>wrong</b> | ?       |                      |         |                      |
|     | (A)  | Fundamental Po                         | oisson            | brackets are inva      | ariant  | under canonical      | transf  | formation            |
|     | (B)  | All Poisson brac                       | kets a            | are canonical inva     | riants  |                      |         |                      |
|     | (C)  | Poisson brackets                       | s of ca           | nonical variables      | are k   | nown as fundam       | ental   | Poisson brackets     |
|     | (D)  | Poisson brackets                       | s are 1           | not canonically in     | variai  | nt                   |         |                      |
| 39. |      | generalized co-ore<br>the dimension of |                   | has the dimension      | on of   | momentum, the ¿      | genera  | ilized velocity will |
|     | (A)  | Velocity                               | (B)               | Force                  | (C)     | Torque               | (D)     | Acceleration         |
| 40. | Ang  | ular momentum I                        | ₋ is gi           | ven by :               |         |                      |         |                      |
|     | (A)  | $L = r \times v$                       | (B)               | $L = m \times v$       | (C)     | $L = m(r \times v)$  | (D)     | $L = m(r \times a)$  |
| 41. | Poss | ible number of de                      | grees             | of freedom for a       | rigid l | oody is:             |         |                      |
|     | (A)  | 3                                      | (B)               | 6                      | (C)     | 9                    | (D)     | infinite             |
| 42. | _    | ial theory of rela<br>tant :           | tivity            | deals with event       | s in tl | ne frame of refer    | ence v  | which moves with     |
|     | (A)  | speed                                  | (B)               | velocity               | (C)     | acceleration         | (D)     | momentum             |
| 43. | The  | energy E, rest ma                      | ss m <sub>0</sub> | and the moment         | um P    | of a relativistic pa | article | are related as :     |

In an integrator, the feedback element is:

(A)  $E^2 = m_0^2 C^2 + P^2 C^2$ 

(C)  $E^2 = m_0^2 C^2 + PC$ 

(B)  $E^2 = m_0^2 C^4 + P^2 C^2$ 

(D)  $E^2 = m_0^2 C + P^2 C$ 

| 44.        |      | K.E. of a body is t<br>e body :        | wice i  | ts rest mass                                                     | energ   | y. Fin           | nd the ratio of r                     | elativisti  | mass to rest mass                    |
|------------|------|----------------------------------------|---------|------------------------------------------------------------------|---------|------------------|---------------------------------------|-------------|--------------------------------------|
|            | (A)  | 3                                      | (B)     | $\frac{1}{3}$                                                    |         | (C)              | 2                                     | (D)         | $\frac{1}{2}$                        |
| 45.        |      | constraint that ca<br>is known as :    | n be e  | expressed in                                                     | the fo  | orm of           | f an equation c                       | onnecting   | g co-ordinates and                   |
|            | (A)  | Holonomic                              |         |                                                                  | (B)     | Non              | -holonomic                            |             |                                      |
|            | (C)  | Sceleronomous                          |         |                                                                  | (D)     | Rho              | mbus                                  |             |                                      |
| 46.        | De-E | Broglie wavelengt                      | h of a  | particle of                                                      | kinetio | ener             | gy E is given b                       | y:          |                                      |
|            | (A)  | $\frac{h}{\sqrt{2mE}}$                 | (B)     | $\frac{h}{\sqrt{mE}}$                                            |         | (C)              | $\frac{h}{mE}$                        | (D)         | $\frac{hE}{\sqrt{2m}}$               |
| <b>47.</b> | The  | zero point energy                      | of a    | linear harm                                                      | onic c  | scillat          | tor is :                              |             |                                      |
|            | (A)  | Zero                                   | (B)     | hυ                                                               |         | (C)              | $\frac{1}{2}$ hv                      | (D)         | 2hv                                  |
| 48.        | Grou | ınd state energy l                     | level c | of a particle                                                    | in a c  | ubical           | box is:                               |             |                                      |
|            | (A)  | six fold degener                       | ate     |                                                                  | (B)     | three            | e fold degenera                       | ate         |                                      |
|            | (C)  | two fold degene                        | erate   |                                                                  | (D)     | non-             | degenerate                            |             |                                      |
| 49.        | Mon  | nentum operator                        | is :    |                                                                  |         |                  |                                       |             |                                      |
|            | (A)  | $i\hbar \frac{\partial}{\partial t}$   | (B)     | $\frac{\mathrm{i}\hbar}{\mathrm{m}} \frac{\partial}{\partial x}$ |         | (C)              | $-i\hbar \frac{\partial}{\partial x}$ | (D)         | $i\hbar \frac{\partial}{\partial x}$ |
| 50.        | The  | degree of degene                       | racy f  | or a three d                                                     | limens  | ional            | harmonic oscil                        | llator is : |                                      |
|            | (A)  | $\frac{1}{2}(n+1)(n+2)$                | )       |                                                                  | (B)     | $\frac{1}{2}(2)$ | (n+1)(2n+2)                           |             |                                      |
|            | (C)  | (n+1)(n+2)                             |         |                                                                  | (D)     | 2(n -            | +1)(n+2)                              |             |                                      |
| 51.        |      | n increase in quar<br>n anharmonic osc |         |                                                                  | e ener  | gy dif           | fference betwee                       | en succes   | ssive energy levels                  |
|            | (A)  | remains same                           |         |                                                                  | (B)     | incre            | eases                                 |             |                                      |

(C) decreases

(D) periodically increase and decrease

|     | (A)     | Position and mo       | ment        | um only                                    |        |         |                      |          |                      |   |
|-----|---------|-----------------------|-------------|--------------------------------------------|--------|---------|----------------------|----------|----------------------|---|
|     | (B)     | Energy and time       | e only      | 7                                          |        |         |                      |          |                      |   |
|     | (C)     | Angular momer         | ntum        | and angle o                                | nly    |         |                      |          |                      |   |
|     | (D)     | All canonically       | conju       | gate physica                               | ıl qua | ntities | whose produc         | t has di | mensions of action   | 1 |
| 53. | Klei    | n - Gordan equati     | on is       | valid for :                                |        |         |                      |          |                      |   |
|     | (A)     | Electrons             |             |                                            | (B)    | Prot    | ons                  |          |                      |   |
|     | (C)     | Spin ½ particles      | ;           |                                            | (D)    | Spin    | zero particles       |          |                      |   |
| 54. | No tof: | two electrons can     | have        | all the four                               | r quai | ntum    | numbers identi       | cal. Th  | is is the statemen   | t |
|     | (A)     | Uncertainty pri       | nciple      | 9                                          | (B)    | Paul    | i's exclusion pr     | inciple  |                      |   |
|     | (C)     | Hamilton's prin       | ciple       |                                            | (D)    | Gau     | ss principle         |          |                      |   |
| 55. | Whe     | en curl of a vector   | is ze       | ro in some r                               | egion  | , then  | in that region t     | he vecto | or is :              |   |
|     | (A)     | Rotational            | (B)         | Irrotationa                                | al     | (C)     | Diverging            | (D)      | Converging           |   |
| 56. | Cha     | racteristic equatio   | n of 1      | matrix A is :                              |        |         |                      |          |                      |   |
|     | (A)     | $ A - \lambda I  = 0$ | (B)         | $ \mathbf{I} - \lambda \mathbf{A}  = 0$    | )      | (C)     | $ A\lambda - I  = 0$ | (D)      | $ \lambda - AI  = 0$ |   |
| 57. | Tho     | rank of the matri     | <b>y</b> [3 | $\begin{bmatrix} 1 & 4 \end{bmatrix}_{is}$ |        |         |                      |          |                      |   |
| 57. | THE     | rank of the matri     | ^ 2         | 4  5                                       |        |         |                      |          |                      |   |
|     | (A)     | 6                     | (B)         | 1                                          |        | (C)     | 2                    | (D)      | 3                    |   |
| 58. | The     | residue of cot Z a    | t Z=        | 0 is :                                     |        |         |                      |          |                      |   |
|     | (A)     | Zero                  | (B)         | π                                          |        | (C)     | -1                   | (D)      | 1                    |   |
| 59. | Аро     | oint at which a fu    | nctio       | f(z) ceases                                | to be  | analy   | tic is called :      |          |                      |   |
|     | (A)     | singularity           | (B)         | double pol                                 | le     | (C)     | pole                 | (D)      | holonomic            |   |
| 60. | Com     | nmutative group i     | s calle     | ed:                                        |        |         |                      |          |                      |   |
|     | (A)     | semi group            | (B)         | abelian gr                                 | oup    | (C)     | monoid               | (D)      | android              |   |
| 61. | A gr    | oup having no p       | roper       | normal sub                                 | group  | is cal  | led :                |          |                      |   |
|     | (A)     | normal subgrou        | р           |                                            | (B)    | abel    | ian subgroup         |          |                      |   |
|     | (C)     | simple group          |             |                                            | (D)    | trivi   | al subgroup          |          |                      |   |
| A   |         |                       |             |                                            | 9      |         |                      |          | 065/2018             | 3 |
|     |         |                       |             |                                            |        |         |                      |          | {P.T.O.              | } |

The uncertainty relation applies to:

**52.** 

|      | (A)                 | One                                | (B)       | Two           |         | (C)     | Zero           | (D)           | Three          |       |
|------|---------------------|------------------------------------|-----------|---------------|---------|---------|----------------|---------------|----------------|-------|
| 63.  | If $\int_{-1}^{+1}$ | $P_{n}(x)dx = 2 t $                | nen, n=?  | ,             |         |         |                |               |                |       |
|      | (A)                 | 1                                  | (B)       | Zero          |         | (C)     | 2              | (D)           | -1             |       |
| 64.  | The                 | total solar radi                   | ation rec | eived at an   | y poir  | nt on t | the earth is r | referred to a | as:            |       |
|      | (A)                 | albedo                             |           |               | (B)     | bear    | n radiation    |               |                |       |
|      | (C)                 | diffuse radiat                     | tion      |               | (D)     | inso    | lation         |               |                |       |
| 65.  |                     | ctures formed v                    |           | iconductor    | thin fi | lms o   | f different ba | and gaps sta  | acked one afte | r the |
|      | (A)                 | multiple quar                      | ntum we   | lls           | (B)     | quar    | ntum well      |               |                |       |
|      | (C)                 | quantum wir                        | re        |               | (D)     | quar    | ntum dot       |               |                |       |
| 66.  | In qu               | ıantum dots, c                     | harge ca  | rriers are c  | onfine  | d in :  |                |               |                |       |
|      | (A)                 | two dimension                      | ons       |               | (B)     | one     | dimension      |               |                |       |
|      | (C)                 | three dimens                       | ions      |               | (D)     | in a    | plane          |               |                |       |
| 67.  | Higg                | gs boson has a                     | spin :    |               |         |         |                |               |                |       |
|      | (A)                 | Zero                               | (B)       | One           |         | (C)     | $\frac{1}{2}$  | (D)           | $\frac{-1}{2}$ |       |
| 68.  |                     | reinforcing so<br>tant velocity is | •         | -             | t that  | main    | tains its sha  | ape while i   | t propagates   | at a  |
|      | (A)                 | Bions                              | (B)       | Solitons      |         | (C)     | Gluons         | (D)           | Photons        |       |
| 69.  | Nega                | ative index me                     | tamateri  | als have :    |         |         |                |               |                |       |
|      | (A)                 | negative relat                     | ive pern  | nittivity and | l posit | ive re  | lative perme   | ability       |                |       |
|      | (B)                 | negative relat                     | ive pern  | neability an  | d posi  | tive re | elative perm   | ittivity      |                |       |
|      | (C)                 | both relative                      | permeab   | ility and re  | lative  | perm    | ittivity are n | egative       |                |       |
|      | (D)                 | positive refra                     | ctive ind | ex            |         |         |                |               |                |       |
| 065/ | 2018                |                                    |           |               | 10      |         |                |               |                | A     |
|      |                     |                                    |           |               |         |         |                |               |                |       |

**62.** Kronecker delta is a mixed tensor of order :

| 74.  |        | •                                      |                        | · ·                                                              |
|------|--------|----------------------------------------|------------------------|------------------------------------------------------------------|
| , 1. | (A)    | External criticism                     | (B)                    | Expert criticism                                                 |
| 74.  | The    | authenticity of data in Historic       | al Resear              | ch can be established through :                                  |
|      |        |                                        |                        |                                                                  |
|      | (C)    | (a), (c), (e), (d), (b)                | (D)                    | (a), (c), (b), (e), (d)                                          |
|      | (A)    | (a), (e), (c), (b), (d)                | (B)                    | (a), (e), (b), (c), (d)                                          |
|      | ` ,    | <del>-</del>                           | (D)                    | ( ) ( ) ( ) ( ) ( )                                              |
|      | (e)    | Comparison                             |                        |                                                                  |
|      | (d)    | Generalisation                         |                        |                                                                  |
|      | (c)    | Presentation                           |                        |                                                                  |
|      | (b)    | Recapitulation                         |                        |                                                                  |
|      | (a)    | <u>-</u>                               |                        |                                                                  |
|      |        | Preparation                            | 4                      |                                                                  |
| 73.  | Arra   | inge the following in correct se       | equence :              |                                                                  |
|      |        |                                        |                        |                                                                  |
|      | (D)    | Related literature of the study        | /                      |                                                                  |
|      | (D)    | Related literature of the study        |                        | J                                                                |
|      | (C)    | Tools and techniques used for          | r the stud             | 77                                                               |
|      | (B)    | Sample taken for the study             | acty                   |                                                                  |
|      | (A)    | Procedure adopted for the stu          |                        | and the means desired, examples of a mission.                    |
| 72.  | Whi    | ch of the following need <b>not</b> be | included               | in the methodology chapter of a thesis?                          |
|      | (C)    | Practicability                         | (D)                    | Easiness of conducting                                           |
|      | (A)    | Objective-basedness                    | (B)                    |                                                                  |
| 71.  |        |                                        |                        | iteria for selecting a learning experience?  Learner orientation |
| 71   | TA71.: | ah amana tha fallassina mass m         | a <b>. 1</b> . a. a. a | itaria far calcatina a lacroina accomina a                       |
|      | (C)    | Astronomical green shift               | (D)                    | No shift                                                         |
|      | ` '    |                                        | ` '                    |                                                                  |
|      | (A)    | Astronomical blue shift                | (B)                    | Astronomical red shift                                           |

{P.T.O.}

Expanding universe theory is based on the observation of :

70.

| 77. | vv ni        | en of the following       | g pro  | viaes nigne       | est con  | creter  | ness of learning | ng experie  | nce ?             |    |
|-----|--------------|---------------------------|--------|-------------------|----------|---------|------------------|-------------|-------------------|----|
|     | (A)          | Excursion                 |        |                   | (B)      | Field   | l trip           |             |                   |    |
|     | (C)          | Exhibition                |        |                   | (D)      | Drai    | matisation       |             |                   |    |
| 78. | Whi          | ch among the follo        | wing   | ; is an inter     | rvenin   | g vari  | able ?           |             |                   |    |
|     | (A)          | Teaching method           | d      |                   | (B)      | Intel   | ligence          |             |                   |    |
|     | (C)          | Fatigue                   |        |                   | (D)      | Soci    | o-economic le    | evel        |                   |    |
| 79. | Whi          | ch of the following       | g belo | ongs to psy       | chomo    | otor do | omain of obje    | ctives ?    |                   |    |
|     | (A)          | Development of            | inforı | mation pro        | cessing  | g skill | s                |             |                   |    |
|     | (B)          | Development of            | desira | able attitud      | les      |         |                  |             |                   |    |
|     | (C)          | Development of            | mani   | pulative sk       | ills     |         |                  |             |                   |    |
|     | (D)          | Development of            | critic | al thinking       |          |         |                  |             |                   |    |
| 80. | Whi          | ch of the following       | g does | s <b>not</b> emph | asise t  | ime r   | estriction ?     |             |                   |    |
|     | (A)          | Prognostic test           |        |                   | (B)      | Perf    | ormance test     |             |                   |    |
|     | (C)          | Summative test            |        |                   | (D)      | Diag    | gnostic test     |             |                   |    |
| 81. | Whi          | ch Article of the Ir      | ndian  | Constitution      | on des   | cribec  | l by Ambedk      | ar as the " | 'Heart and Soul"  | ?  |
|     | (A)          | Article 14                | (B)    | Article 52        | <u>.</u> | (C)     | Article 24       | (D)         | Article 32        |    |
| 82. | The          | term "PURA" is a          | ssocia | ated with v       | which •  | of the  | following?       |             |                   |    |
|     | (A)          | Project for Urbar         | n and  | Regional .        | Affairs  | ;       |                  |             |                   |    |
|     | (B)          | Provision of Urba         | an Aı  | menities in       | Rural    | Area    | S                |             |                   |    |
|     | (C)          | Public Undertaki          | ing R  | egulation 1       | Act      |         |                  |             |                   |    |
|     | (D)          | Public Utilities R        | egula  | itory Analy       | rst      |         |                  |             |                   |    |
| 83. |              | tify the Commiss<br>ions. | ion a  | ppointed          | to stud  | dy the  | e problems c     | onnected    | with Centre-Stat  | te |
|     | (A)          | Sarkaria Commis           | ssion  |                   | (B)      | Man     | dal Commiss      | sion        |                   |    |
|     | (C)          | Liberhan Commi            | ission | L                 | (D)      | Nan     | avathy Comr      | nission     |                   |    |
| 84. | In w<br>Act" | hich year Indian ?        | Parlia | nment pass        | ed the   | 'Prot   | ection of wor    | men from    | domestic violence | æ  |
|     | (A)          | 2009                      | (B)    | 2010              |          | (C)     | 2007             | (D)         | 2005              |    |
|     |              |                           |        |                   |          |         |                  |             |                   |    |

| 85. |               | concept of Directch country?    | tive Pri | inciples of S | tate Po | энсу а  | aoptea into tne   | constit | ution of India from  |
|-----|---------------|---------------------------------|----------|---------------|---------|---------|-------------------|---------|----------------------|
|     | (A)           | Britain                         | (B)      | USA           |         | (C)     | Ireland           | (D)     | Germany              |
| 86. |               | n the listed items<br>viation.  | s, ident | ify the sche  | mes re  | lated   | with employme     | nt gene | ration and poverty   |
|     | (A)           | RSBY                            | (B)      | MGNREG        | S       | (C)     | IRDA              | (D)     | ITDP                 |
| 87. | Whi           | ch part of the Ir               | ıdian c  | onstitution   | deals v | with f  | undamental rig    | hts?    |                      |
|     | (A)           | Part III                        | (B)      | Part IV       |         | (C)     | Part VI           | (D)     | Part I               |
| 88. |               | term of office of<br>d Rights ? | the Ch   | airperson aı  | nd me   | mbers   | of National Co    | mmissio | on for Protection of |
|     | (A)           | 6 years                         | (B)      | 5 years       |         | (C)     | 4 years           | (D)     | 3 years              |
| 89. | Whi           | ch article of the               | Indian   | constitution  | n deal  | s witł  | ı constitution ar | nendm   | ents ?               |
|     | (A)           | Article 352                     | (B)      | Article 32    | 6       | (C)     | Article 368       | (D)     | Article 360          |
| 90. | Whi           | ch organization                 | is relat | ed to the R   | ight to | Info    | rmation Act, 20   | 05 ?    |                      |
|     | (A)           | Chipko Mover                    | nent     |               |         |         |                   |         |                      |
|     | (B)           | Bharatiya Kisa                  | n Unio   | n             |         |         |                   |         |                      |
|     | (C)           | Mazdoor Kisa                    | n Shak   | ti Sangatha   | n       |         |                   |         |                      |
|     | (D)           | Narmada Bach                    | nao An   | dolan         |         |         |                   |         |                      |
| 91. | The           | social reformer                 | in Kera  | ala started t | he jou  | ırnal ' | Atmavidyakaha     | lam'.   |                      |
|     | (A)           | Ayyankali                       |          |               | (B)     | Vaik    | unda Swamika      | 1       |                      |
|     | (C)           | Vaghbhatanar                    | nda      |               | (D)     | V.T.    | Bhattathirippa    | d       |                      |
| 92. | Whi           | ch event is haile               | d by G   | andhiji as '  | A mira  | icle of | modern times'     | ?       |                      |
|     | (A)           | Savarna Jatha                   |          |               | (B)     | Tem     | ple entry Procla  | mation  | ı                    |
|     | (C)           | Guruvayur Sa                    | nthyagı  | raha          | (D)     | Vaik    | om Sathyagrah     | a       |                      |
| 93. | 'A li<br>of : | ghted lantern be                | tween    | two elephar   | nts and | l an o  | pen book on a b   | ook hol | der' is the emblem   |
|     | (A)           | Kerala State Li                 | brary (  | Council       | (B)     | Purc    | gamana Sahith     | ya Pras | sthanam              |
|     | (C)           | Kerala Univers                  | sity     |               | (D)     | Nata    | ıka Prasthanam    | L       |                      |
| A   |               |                                 |          |               | 13      |         |                   |         | 065/2018             |

| 94.  | Who wrote the book 'Punarjanma Smaranakal' ?                                             |                                                   |      |           |      |                          |              |     |           |
|------|------------------------------------------------------------------------------------------|---------------------------------------------------|------|-----------|------|--------------------------|--------------|-----|-----------|
|      | (A)                                                                                      | (A) P.K. Chathan Master                           |      |           |      | M.C. Joseph              |              |     |           |
|      | (C)                                                                                      | Swami Ananda                                      | Thee | erthan    | (D)  | P. K                     | rishnapillai |     |           |
| 95.  | C.M.S. Press, the first printing press in Kerala was established by :                    |                                                   |      |           |      |                          |              |     |           |
|      | (A) Elias Kuriakose Chavara                                                              |                                                   |      |           | (B)  | Poikayil Yohannan hannan |              |     |           |
|      | (C)                                                                                      | d) Benjamine Bailey                               |      |           | (D)  | Hermen Gundert           |              |     |           |
| 96.  | Which Indian city is associated with India's first air conditioned Suburban local train? |                                                   |      |           |      |                          |              |     |           |
|      | (A)                                                                                      | Kolkata                                           | (B)  | Mumbai    |      | (C)                      | Bangalore    | (D) | Delhi     |
| 97.  | Who is the Current President of South Korea ?                                            |                                                   |      |           |      |                          |              |     |           |
|      | (A)                                                                                      | Moon Jae-in                                       |      |           | (B)  | Xi Jinping               |              |     |           |
|      | (C)                                                                                      | Roh Tae-Woo                                       |      |           | (D)  | Kim                      | Jong un      |     |           |
| 98.  | Whi                                                                                      | ich is the hardest substance available on earth ? |      |           |      |                          |              |     |           |
|      | (A)                                                                                      | Platinum                                          | (B)  | Silver    |      | (C)                      | Gold         | (D) | Diamond   |
| 99.  | Bleeding gums or tooth loss is a symptom of the disease :                                |                                                   |      |           |      |                          |              |     |           |
|      | (A)                                                                                      | Glaucoma                                          | (B)  | Scurvy    |      | (C)                      | Goitre       | (D) | Beri-beri |
| 100. | The World's first country to grant Citizenship to a robot :                              |                                                   |      |           |      |                          |              |     |           |
|      | (A)                                                                                      | Israel                                            | (B)  | Saudi Ara | ıbia | (C)                      | Britain      | (D) | Germany   |
|      | - o O o -                                                                                |                                                   |      |           |      |                          |              |     |           |

## **SPACE FOR ROUGH WORK**

## **SPACE FOR ROUGH WORK**